Loading…

Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel

The quantitative assessment of environmental contaminants is a complex process. It involves nonlinear models and the characterization of variables, factors, and parameters that are distributed and dependent on each other. Assessments based on point estimates are easy to perform, but since they are u...

Full description

Saved in:
Bibliographic Details
Published in:Environment international 1995-01, Vol.21 (5), p.627-635
Main Authors: Voit, Eberhard O., Leonard Balthis, W., Holser, Ronald A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03
cites cdi_FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03
container_end_page 635
container_issue 5
container_start_page 627
container_title Environment international
container_volume 21
creator Voit, Eberhard O.
Leonard Balthis, W.
Holser, Ronald A.
description The quantitative assessment of environmental contaminants is a complex process. It involves nonlinear models and the characterization of variables, factors, and parameters that are distributed and dependent on each other. Assessments based on point estimates are easy to perform, but since they are unreliable, Monte Carlo simulations have become a standard procedure. Simulations pose two challenges: They require the numerical characterization of parameter distributions and they do not account for dependencies between parameters. This paper offers strategies for dealing with both challenges. The first part discusses the characterization of data with the S-distribution. This distribution offers several advantages, which include simplicity of numerical analysis, flexibility in shape, and easy computation of quantiles. The second part outlines how the S-distribution can be used for hierarchical Monte Carlo simulations. In these simulations the selection of parameter values occurs sequentially, and each choice depends on the parameter values selected before. The method is illustrated with preliminary simulation analyses that are concerned with mercury contamination in king mackerel ( Scomberomorus cavalla). It is demonstrated that the results of such hierarchical simulations are generally different from those of traditional Monte Carlo simulations.
doi_str_mv 10.1016/0160-4120(95)00067-U
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17007839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016041209500067U</els_id><sourcerecordid>14398208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03</originalsourceid><addsrcrecordid>eNqFkU9vFCEchidGE9fqN_DAwRg9jPJvGPBg0mzUmtR40D2T3wJjsQyswNTs3Q8u4zY92gMhwPO-EJ6ue07wG4KJeNsG7jmh-JUaXmOMxdjvHnQbIkfWi3HAD7vNHfK4e1LKzwZRLodN9-fCuwzZXHkDAX1JsTq0hRwSmpN1wccf6LevV-hbb32p2e-X6lMs79A2ReMOtSCIFvkQlnYK1d-4tgHhWHxBaUKzy2bJR2RaMcw-wppGPqLrtXkGc-2yC0-7RxOE4p7dzmfd7uOH79uL_vLrp8_b88ve8IHWnjAsJ66oZUJwGKnFbcHUAIxbNTECeyEZxwSACsqMGA1n-z0wa6QzEjA7616eeg85_VpcqXr2xbgQILq0FE1GjEfJ1P0gZ0pSLO8HmeCjEqSB_ASanErJbtKH7GfIR02wXiXq1ZBeDWk16H8S9a7FXtz2Q2mCpgzR-HKXpYrQga3PeH_CXPu9m2ZUF-NdE2R9dqZqm_z_7_kLM5ixyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13647961</pqid></control><display><type>article</type><title>Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel</title><source>ScienceDirect Freedom Collection</source><creator>Voit, Eberhard O. ; Leonard Balthis, W. ; Holser, Ronald A.</creator><contributor>Beer, T (eds) ; Post, D</contributor><creatorcontrib>Voit, Eberhard O. ; Leonard Balthis, W. ; Holser, Ronald A. ; Beer, T (eds) ; Post, D</creatorcontrib><description>The quantitative assessment of environmental contaminants is a complex process. It involves nonlinear models and the characterization of variables, factors, and parameters that are distributed and dependent on each other. Assessments based on point estimates are easy to perform, but since they are unreliable, Monte Carlo simulations have become a standard procedure. Simulations pose two challenges: They require the numerical characterization of parameter distributions and they do not account for dependencies between parameters. This paper offers strategies for dealing with both challenges. The first part discusses the characterization of data with the S-distribution. This distribution offers several advantages, which include simplicity of numerical analysis, flexibility in shape, and easy computation of quantiles. The second part outlines how the S-distribution can be used for hierarchical Monte Carlo simulations. In these simulations the selection of parameter values occurs sequentially, and each choice depends on the parameter values selected before. The method is illustrated with preliminary simulation analyses that are concerned with mercury contamination in king mackerel ( Scomberomorus cavalla). It is demonstrated that the results of such hierarchical simulations are generally different from those of traditional Monte Carlo simulations.</description><identifier>ISSN: 0160-4120</identifier><identifier>EISSN: 1873-6750</identifier><identifier>DOI: 10.1016/0160-4120(95)00067-U</identifier><identifier>CODEN: ENVIDV</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Agnatha. Pisces ; Animal, plant and microbial ecology ; Applied ecology ; Biological and medical sciences ; Ecotoxicology, biological effects of pollution ; Effects of pollution and side effects of pesticides on vertebrates ; Fundamental and applied biological sciences. Psychology ; Marine ; scomberomorus cavalla</subject><ispartof>Environment international, 1995-01, Vol.21 (5), p.627-635</ispartof><rights>1995</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03</citedby><cites>FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2912538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Beer, T (eds)</contributor><contributor>Post, D</contributor><creatorcontrib>Voit, Eberhard O.</creatorcontrib><creatorcontrib>Leonard Balthis, W.</creatorcontrib><creatorcontrib>Holser, Ronald A.</creatorcontrib><title>Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel</title><title>Environment international</title><description>The quantitative assessment of environmental contaminants is a complex process. It involves nonlinear models and the characterization of variables, factors, and parameters that are distributed and dependent on each other. Assessments based on point estimates are easy to perform, but since they are unreliable, Monte Carlo simulations have become a standard procedure. Simulations pose two challenges: They require the numerical characterization of parameter distributions and they do not account for dependencies between parameters. This paper offers strategies for dealing with both challenges. The first part discusses the characterization of data with the S-distribution. This distribution offers several advantages, which include simplicity of numerical analysis, flexibility in shape, and easy computation of quantiles. The second part outlines how the S-distribution can be used for hierarchical Monte Carlo simulations. In these simulations the selection of parameter values occurs sequentially, and each choice depends on the parameter values selected before. The method is illustrated with preliminary simulation analyses that are concerned with mercury contamination in king mackerel ( Scomberomorus cavalla). It is demonstrated that the results of such hierarchical simulations are generally different from those of traditional Monte Carlo simulations.</description><subject>Agnatha. Pisces</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Effects of pollution and side effects of pesticides on vertebrates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Marine</subject><subject>scomberomorus cavalla</subject><issn>0160-4120</issn><issn>1873-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEchidGE9fqN_DAwRg9jPJvGPBg0mzUmtR40D2T3wJjsQyswNTs3Q8u4zY92gMhwPO-EJ6ue07wG4KJeNsG7jmh-JUaXmOMxdjvHnQbIkfWi3HAD7vNHfK4e1LKzwZRLodN9-fCuwzZXHkDAX1JsTq0hRwSmpN1wccf6LevV-hbb32p2e-X6lMs79A2ReMOtSCIFvkQlnYK1d-4tgHhWHxBaUKzy2bJR2RaMcw-wppGPqLrtXkGc-2yC0-7RxOE4p7dzmfd7uOH79uL_vLrp8_b88ve8IHWnjAsJ66oZUJwGKnFbcHUAIxbNTECeyEZxwSACsqMGA1n-z0wa6QzEjA7616eeg85_VpcqXr2xbgQILq0FE1GjEfJ1P0gZ0pSLO8HmeCjEqSB_ASanErJbtKH7GfIR02wXiXq1ZBeDWk16H8S9a7FXtz2Q2mCpgzR-HKXpYrQga3PeH_CXPu9m2ZUF-NdE2R9dqZqm_z_7_kLM5ixyw</recordid><startdate>19950101</startdate><enddate>19950101</enddate><creator>Voit, Eberhard O.</creator><creator>Leonard Balthis, W.</creator><creator>Holser, Ronald A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>19950101</creationdate><title>Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel</title><author>Voit, Eberhard O. ; Leonard Balthis, W. ; Holser, Ronald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Agnatha. Pisces</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Effects of pollution and side effects of pesticides on vertebrates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Marine</topic><topic>scomberomorus cavalla</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voit, Eberhard O.</creatorcontrib><creatorcontrib>Leonard Balthis, W.</creatorcontrib><creatorcontrib>Holser, Ronald A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environment international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voit, Eberhard O.</au><au>Leonard Balthis, W.</au><au>Holser, Ronald A.</au><au>Beer, T (eds)</au><au>Post, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel</atitle><jtitle>Environment international</jtitle><date>1995-01-01</date><risdate>1995</risdate><volume>21</volume><issue>5</issue><spage>627</spage><epage>635</epage><pages>627-635</pages><issn>0160-4120</issn><eissn>1873-6750</eissn><coden>ENVIDV</coden><abstract>The quantitative assessment of environmental contaminants is a complex process. It involves nonlinear models and the characterization of variables, factors, and parameters that are distributed and dependent on each other. Assessments based on point estimates are easy to perform, but since they are unreliable, Monte Carlo simulations have become a standard procedure. Simulations pose two challenges: They require the numerical characterization of parameter distributions and they do not account for dependencies between parameters. This paper offers strategies for dealing with both challenges. The first part discusses the characterization of data with the S-distribution. This distribution offers several advantages, which include simplicity of numerical analysis, flexibility in shape, and easy computation of quantiles. The second part outlines how the S-distribution can be used for hierarchical Monte Carlo simulations. In these simulations the selection of parameter values occurs sequentially, and each choice depends on the parameter values selected before. The method is illustrated with preliminary simulation analyses that are concerned with mercury contamination in king mackerel ( Scomberomorus cavalla). It is demonstrated that the results of such hierarchical simulations are generally different from those of traditional Monte Carlo simulations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/0160-4120(95)00067-U</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0160-4120
ispartof Environment international, 1995-01, Vol.21 (5), p.627-635
issn 0160-4120
1873-6750
language eng
recordid cdi_proquest_miscellaneous_17007839
source ScienceDirect Freedom Collection
subjects Agnatha. Pisces
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
Ecotoxicology, biological effects of pollution
Effects of pollution and side effects of pesticides on vertebrates
Fundamental and applied biological sciences. Psychology
Marine
scomberomorus cavalla
title Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Monte%20Carlo%20modeling%20with%20S-distributions:%20Concepts%20and%20illustrative%20analysis%20of%20mercury%20contamination%20in%20king%20mackerel&rft.jtitle=Environment%20international&rft.au=Voit,%20Eberhard%20O.&rft.date=1995-01-01&rft.volume=21&rft.issue=5&rft.spage=627&rft.epage=635&rft.pages=627-635&rft.issn=0160-4120&rft.eissn=1873-6750&rft.coden=ENVIDV&rft_id=info:doi/10.1016/0160-4120(95)00067-U&rft_dat=%3Cproquest_cross%3E14398208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-1308f492d3664a72d0492395a34d9f31ab683401aa2623c67c43bba3dc8ec8a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13647961&rft_id=info:pmid/&rfr_iscdi=true