Loading…
Strong hyperfine-induced modulation of an optically driven hole spin in an InAs quantum dot
Compared to electrons, holes in InAs quantum dots have a significantly weaker hyperfine interaction that leads to less dephasing from nuclear spins. Thus many recent studies have suggested that nuclear spins are unimportant for hole-spin dynamics compared to electric-field fluctuations. We show that...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-02, Vol.89 (7), Article 075316 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compared to electrons, holes in InAs quantum dots have a significantly weaker hyperfine interaction that leads to less dephasing from nuclear spins. Thus many recent studies have suggested that nuclear spins are unimportant for hole-spin dynamics compared to electric-field fluctuations. We show that the hole hyperfine interaction can have a strong effect on hole-spin coherence measurements through a nuclear feedback effect. The nuclear polarization is generated through a unique process that is dependent on the anisotropy of the hole hyperfine interaction and the coherent precession of nuclear spins, giving rise to strong modulation at the nuclear precession frequency. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.89.075316 |