Loading…
Low-energy electron reflectivity of graphene on copper and other substrates
The reflectivity of low-energy electrons from graphene on copper substrates is studied both experimentally and theoretically. Well-known oscillations in the reflectivity of electrons with energies 0-8 eV above the vacuum level are observed in the experiment. These oscillations are reproduced in theo...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-06, Vol.87 (24), Article 245414 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reflectivity of low-energy electrons from graphene on copper substrates is studied both experimentally and theoretically. Well-known oscillations in the reflectivity of electrons with energies 0-8 eV above the vacuum level are observed in the experiment. These oscillations are reproduced in theory, based on a first-principles density functional description of interlayer states forming for various thicknesses of multilayer graphene. It is demonstrated that n layers of graphene produce a regular series of n - 1 minima in the reflectance spectra, together with a possible additional minimum associated with an interlayer state forming between the graphene and the substrate. Both (111) and (001) orientations of the copper substrates are studied. Similarities in their reflectivity spectra arise from the interlayer states, whereas differences are found because of the different Cu band structures along those orientations. Results for graphene on other substrates, including Pt(111) and Ir(111), are also discussed. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.87.245414 |