Loading…
A Metallic Room-Temperature Oxide Ion Conductor
Nanoparticles of Bi3Ir, obtained from a microwave‐assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x≤2) were investigated by X‐ray diffraction, electron microscopy, and qu...
Saved in:
Published in: | Angewandte Chemie International Edition 2014-07, Vol.53 (28), p.7344-7348 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03 |
---|---|
cites | cdi_FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03 |
container_end_page | 7348 |
container_issue | 28 |
container_start_page | 7344 |
container_title | Angewandte Chemie International Edition |
container_volume | 53 |
creator | Heise, Martin Rasche, Bertold Isaeva, Anna Baranov, Alexey I. Ruck, Michael Schäfer, Konrad Pöttgen, Rainer Eufinger, Jens-Peter Janek, Jürgen |
description | Nanoparticles of Bi3Ir, obtained from a microwave‐assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x≤2) were investigated by X‐ray diffraction, electron microscopy, and quantum‐chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time‐ and temperature‐dependent monitoring of the oxygen uptake in an oxygen‐filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.
Oxygen topochemistry: Nanoparticles of Bi3Ir, a hitherto uncharacterized intermetallic compound, reversibly intercalate oxygen from air at room temperature. In the resulting metallic suboxide, the intermetallic building units are preserved. The activation energy for oxide diffusion is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature. |
doi_str_mv | 10.1002/anie.201402244 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1700982861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543278680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0E4r0yokgsLGn9jjNWpUAFFAnx2ixj30iBJC52IuDfk6qlQixM9w7nO7r3Q-iI4AHBmA5NU8KAYsIxpZxvoF0iKElZlrHNfueMpZkSZAftxfja80phuY12KFdSUql20XCU3EBrqqq0yZ33dXoP9RyCabsAye1n6SCZ-iYZ-8Z1tvXhAG0VpopwuJr76OF8cj--TK9vL6bj0XVquSI8JQXYFyuJy8FBBlA4KRwuLDYE93cXmFnOGRAiHBBJVc5yIaXJhcotcwazfXS69M6Df-8gtrouo4WqMg34LmqSYZwrqiT5HxWc0UxJtbCe_EFffRea_pEFRTETVIqeGiwpG3yMAQo9D2VtwpcmWC9a14vW9br1PnC80nYvNbg1_lNzD-RL4KOs4OsfnR7NppPf8nSZLWMLn-usCW9aZiwT-ml2odns6uz58Y7pS_YNFjyaXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1542035265</pqid></control><display><type>article</type><title>A Metallic Room-Temperature Oxide Ion Conductor</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Heise, Martin ; Rasche, Bertold ; Isaeva, Anna ; Baranov, Alexey I. ; Ruck, Michael ; Schäfer, Konrad ; Pöttgen, Rainer ; Eufinger, Jens-Peter ; Janek, Jürgen</creator><creatorcontrib>Heise, Martin ; Rasche, Bertold ; Isaeva, Anna ; Baranov, Alexey I. ; Ruck, Michael ; Schäfer, Konrad ; Pöttgen, Rainer ; Eufinger, Jens-Peter ; Janek, Jürgen</creatorcontrib><description>Nanoparticles of Bi3Ir, obtained from a microwave‐assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x≤2) were investigated by X‐ray diffraction, electron microscopy, and quantum‐chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time‐ and temperature‐dependent monitoring of the oxygen uptake in an oxygen‐filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.
Oxygen topochemistry: Nanoparticles of Bi3Ir, a hitherto uncharacterized intermetallic compound, reversibly intercalate oxygen from air at room temperature. In the resulting metallic suboxide, the intermetallic building units are preserved. The activation energy for oxide diffusion is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201402244</identifier><identifier>PMID: 24866268</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Activation energy ; Buildings ; Conductors (devices) ; Construction ; Diffusion ; intermetallic phases ; Intermetallics ; ion conductors ; metastable compounds ; Nanoparticles ; Oxides ; Quantum chemistry ; subvalent compounds ; Temperature ; topochemistry</subject><ispartof>Angewandte Chemie International Edition, 2014-07, Vol.53 (28), p.7344-7348</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03</citedby><cites>FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24866268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heise, Martin</creatorcontrib><creatorcontrib>Rasche, Bertold</creatorcontrib><creatorcontrib>Isaeva, Anna</creatorcontrib><creatorcontrib>Baranov, Alexey I.</creatorcontrib><creatorcontrib>Ruck, Michael</creatorcontrib><creatorcontrib>Schäfer, Konrad</creatorcontrib><creatorcontrib>Pöttgen, Rainer</creatorcontrib><creatorcontrib>Eufinger, Jens-Peter</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>A Metallic Room-Temperature Oxide Ion Conductor</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Nanoparticles of Bi3Ir, obtained from a microwave‐assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x≤2) were investigated by X‐ray diffraction, electron microscopy, and quantum‐chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time‐ and temperature‐dependent monitoring of the oxygen uptake in an oxygen‐filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.
Oxygen topochemistry: Nanoparticles of Bi3Ir, a hitherto uncharacterized intermetallic compound, reversibly intercalate oxygen from air at room temperature. In the resulting metallic suboxide, the intermetallic building units are preserved. The activation energy for oxide diffusion is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.</description><subject>Activation energy</subject><subject>Buildings</subject><subject>Conductors (devices)</subject><subject>Construction</subject><subject>Diffusion</subject><subject>intermetallic phases</subject><subject>Intermetallics</subject><subject>ion conductors</subject><subject>metastable compounds</subject><subject>Nanoparticles</subject><subject>Oxides</subject><subject>Quantum chemistry</subject><subject>subvalent compounds</subject><subject>Temperature</subject><subject>topochemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0E4r0yokgsLGn9jjNWpUAFFAnx2ixj30iBJC52IuDfk6qlQixM9w7nO7r3Q-iI4AHBmA5NU8KAYsIxpZxvoF0iKElZlrHNfueMpZkSZAftxfja80phuY12KFdSUql20XCU3EBrqqq0yZ33dXoP9RyCabsAye1n6SCZ-iYZ-8Z1tvXhAG0VpopwuJr76OF8cj--TK9vL6bj0XVquSI8JQXYFyuJy8FBBlA4KRwuLDYE93cXmFnOGRAiHBBJVc5yIaXJhcotcwazfXS69M6Df-8gtrouo4WqMg34LmqSYZwrqiT5HxWc0UxJtbCe_EFffRea_pEFRTETVIqeGiwpG3yMAQo9D2VtwpcmWC9a14vW9br1PnC80nYvNbg1_lNzD-RL4KOs4OsfnR7NppPf8nSZLWMLn-usCW9aZiwT-ml2odns6uz58Y7pS_YNFjyaXQ</recordid><startdate>20140707</startdate><enddate>20140707</enddate><creator>Heise, Martin</creator><creator>Rasche, Bertold</creator><creator>Isaeva, Anna</creator><creator>Baranov, Alexey I.</creator><creator>Ruck, Michael</creator><creator>Schäfer, Konrad</creator><creator>Pöttgen, Rainer</creator><creator>Eufinger, Jens-Peter</creator><creator>Janek, Jürgen</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140707</creationdate><title>A Metallic Room-Temperature Oxide Ion Conductor</title><author>Heise, Martin ; Rasche, Bertold ; Isaeva, Anna ; Baranov, Alexey I. ; Ruck, Michael ; Schäfer, Konrad ; Pöttgen, Rainer ; Eufinger, Jens-Peter ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Buildings</topic><topic>Conductors (devices)</topic><topic>Construction</topic><topic>Diffusion</topic><topic>intermetallic phases</topic><topic>Intermetallics</topic><topic>ion conductors</topic><topic>metastable compounds</topic><topic>Nanoparticles</topic><topic>Oxides</topic><topic>Quantum chemistry</topic><topic>subvalent compounds</topic><topic>Temperature</topic><topic>topochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heise, Martin</creatorcontrib><creatorcontrib>Rasche, Bertold</creatorcontrib><creatorcontrib>Isaeva, Anna</creatorcontrib><creatorcontrib>Baranov, Alexey I.</creatorcontrib><creatorcontrib>Ruck, Michael</creatorcontrib><creatorcontrib>Schäfer, Konrad</creatorcontrib><creatorcontrib>Pöttgen, Rainer</creatorcontrib><creatorcontrib>Eufinger, Jens-Peter</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heise, Martin</au><au>Rasche, Bertold</au><au>Isaeva, Anna</au><au>Baranov, Alexey I.</au><au>Ruck, Michael</au><au>Schäfer, Konrad</au><au>Pöttgen, Rainer</au><au>Eufinger, Jens-Peter</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Metallic Room-Temperature Oxide Ion Conductor</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2014-07-07</date><risdate>2014</risdate><volume>53</volume><issue>28</issue><spage>7344</spage><epage>7348</epage><pages>7344-7348</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Nanoparticles of Bi3Ir, obtained from a microwave‐assisted polyol process, activate molecular oxygen from air at room temperature and reversibly intercalate it as oxide ions. The closely related structures of Bi3Ir and Bi3IrOx (x≤2) were investigated by X‐ray diffraction, electron microscopy, and quantum‐chemical modeling. In the topochemically formed metallic suboxide, the intermetallic building units are fully preserved. Time‐ and temperature‐dependent monitoring of the oxygen uptake in an oxygen‐filled chamber shows that the activation energy for oxide diffusion (84 meV) is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.
Oxygen topochemistry: Nanoparticles of Bi3Ir, a hitherto uncharacterized intermetallic compound, reversibly intercalate oxygen from air at room temperature. In the resulting metallic suboxide, the intermetallic building units are preserved. The activation energy for oxide diffusion is one order of magnitude smaller than that in any known material. Bi3IrOx is the first metallic oxide ion conductor and also the first that operates at room temperature.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24866268</pmid><doi>10.1002/anie.201402244</doi><tpages>5</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2014-07, Vol.53 (28), p.7344-7348 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1700982861 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Activation energy Buildings Conductors (devices) Construction Diffusion intermetallic phases Intermetallics ion conductors metastable compounds Nanoparticles Oxides Quantum chemistry subvalent compounds Temperature topochemistry |
title | A Metallic Room-Temperature Oxide Ion Conductor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Metallic%20Room-Temperature%20Oxide%20Ion%20Conductor&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Heise,%20Martin&rft.date=2014-07-07&rft.volume=53&rft.issue=28&rft.spage=7344&rft.epage=7348&rft.pages=7344-7348&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201402244&rft_dat=%3Cproquest_cross%3E1543278680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4814-1fecbc61d9ede7eefd65d0fc0a10100f03c443e115de1628939566a9589c3da03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1542035265&rft_id=info:pmid/24866268&rfr_iscdi=true |