Loading…

Defluorination from aqueous solution by Ti(IV)-modified granular activated carbon

Fluoride contamination of drinking water and groundwater is a worldwide concerned issue, and technologies are needed for the treatment of aqueous fluoride. In this study, Ti(IV) species-modified granular activated carbon (Ti(IV)-GAC) was prepared and tested for fluoride removal from aqueous solution...

Full description

Saved in:
Bibliographic Details
Published in:Desalination and water treatment 2015-06, Vol.54 (12), p.3432-3443
Main Authors: Tang, Dingding, Zhao, Yuwei, Wang, Yixin, Yang, Yijia, Li, Dongyang, Peng, Tianwei, Mao, Xuhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluoride contamination of drinking water and groundwater is a worldwide concerned issue, and technologies are needed for the treatment of aqueous fluoride. In this study, Ti(IV) species-modified granular activated carbon (Ti(IV)-GAC) was prepared and tested for fluoride removal from aqueous solution. Batch experiments were performed to investigate the equilibrium, kinetics, and mechanism of fluoride adsorption onto the prepared Ti(IV)-GAC. The results showed that the spontaneous fluoride adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Fluoride adsorption onto the Ti(IV)-GAC was enhanced as the initial fluoride concentration and contact time increased. Alkaline pH and elevated solution temperature did not favor the adsorption of fluoride. Anion exchange between the fluoride ions and the hydroxyl groups of the adsorbents was the major adsorption mechanism. Both batch experiments and flowing column experiments demonstrated that the Ti(IV)-GAC adsorbent can effectively remove the aqueous fluoride with high efficiency, and bring down the fluoride concentration lower than the permissible limit of fluoride in drinking water in China (1.0 mg/L). Experiments also showed that the Ti(IV)-GAC material had favorable regenerability, and can be used as a versatile adsorbent for treating mixed contamination of fluorides and organic pollutants.
ISSN:1944-3986
1944-3994
1944-3986
DOI:10.1080/19443994.2014.910839