Loading…

Three-terminal thermoelectric transport under broken time-reversal symmetry

The thermoelectric transport through a ring threaded by an Aharonov-Bohm flux, with a molecular bridge on one of its arms, is analyzed. The charge carriers also interact with the vibrational excitations of that molecule. This nanosystem is connected to three terminals: two are electronic reservoirs,...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-02, Vol.85 (8), Article 085401
Main Authors: Entin-Wohlman, O., Aharony, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermoelectric transport through a ring threaded by an Aharonov-Bohm flux, with a molecular bridge on one of its arms, is analyzed. The charge carriers also interact with the vibrational excitations of that molecule. This nanosystem is connected to three terminals: two are electronic reservoirs, which supply the charge carriers, and the third is the phonon bath which thermalizes the molecular vibrations. Expressions for the transport coefficients, relating all charge and heat currents to the temperature and chemical potential differences between the terminals, are derived to second order in the electron-vibration coupling. At linear response, all these coefficients obey the full Onsager-Casimir relations. When the phonon bath is held at a temperature different from those of the electronic reservoirs, a heat current exchanged between the molecular vibrations and the charge carriers can be converted into electric and/or heat electronic currents. The related transport coefficients, which exist only due to the electron-vibration coupling, change sign under the interchange between the electronic terminals and the sign change of the magnetic flux. It is also demonstrated that the Aharonov-Bohm flux can enhance this type of conversion.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.85.085401