Loading…

Subluminal and superluminal light propagation in a superconducting quantum circuit via Josephson coupling energy

We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconduct...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2015-05, Vol.465, p.7-12
Main Author: Hamedi, H.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is realized that the slope of dispersion can be changed from negative to positive or vice versa through the ratio of the Josephson coupling energy to the capacitive coupling strength which provides an extra controlling parameter for controlling the slope of dispersion. The temporal behavior of the probe dispersion and the required switching time for switching the superluminal light propagation to the subluminal light propagation are also discussed. The results may be useful for understanding the switching feature of slow light-based systems and have potential application in optical information processing.
ISSN:0921-4526
1873-2135
DOI:10.1016/j.physb.2015.03.003