Loading…

Root Growth Optimizer with Self-Similar Propagation

Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though they have evolved for a longer period of time. This paper p...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-12
Main Authors: Wang, Jie, Niu, Ben, Chen, Hanning, He, Xiaoxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though they have evolved for a longer period of time. This paper presents a new plant-inspired algorithm which is called root growth optimizer (RGO). RGO simulates the iterative growth behaviors of plant roots to optimize continuous space search. In growing process, main roots and lateral roots, classified by fitness values, implement different strategies. Main roots carry out exploitation tasks by self-similar propagation in relatively nutrient-rich areas, while lateral roots explore other places to seek for better chance. Inhibition mechanism of plant hormones is applied to main roots in case of explosive propagation in some local optimal areas. Once resources in a location are exhausted, roots would shrink away from infertile conditions to preserve their activity. In order to validate optimization effect of the algorithm, twelve benchmark functions, including eight classic functions and four CEC2005 test functions, are tested in the experiments. We compared RGO with other existing evolutionary algorithms including artificial bee colony, particle swarm optimizer, and differential evolution algorithm. The experimental results show that RGO outperforms other algorithms on most benchmark functions.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/498626