Loading…

Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline

Waterhammer modeling with fluid–structure interaction (FSI) in a pipeline with axial viscoelastic supports is the aim of this research. The viscoelastic materials of supports (or the pipe wall) were described using the generalized Kelvin–Voigt model. Hydraulic governing equations were solved by the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluids and structures 2015-04, Vol.54, p.215-234
Main Authors: Zanganeh, Roohollah, Ahmadi, Ahmad, Keramat, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Waterhammer modeling with fluid–structure interaction (FSI) in a pipeline with axial viscoelastic supports is the aim of this research. The viscoelastic materials of supports (or the pipe wall) were described using the generalized Kelvin–Voigt model. Hydraulic governing equations were solved by the method of characteristic (MOC) and axial vibration equation of the pipe wall was solved using the finite element method (FEM) in the time domain. For a typical case study, four different types for supporting the pipeline in the axial direction: fully free to move; fixed (rigid support); elastic and viscoelastic supports, subject to a waterhammer are analyzed and the results are scrutinized. The results quantitatively confirm that the use of supports with viscoelastic behavior in the axial direction of the pipeline can significantly reduce axial-pipe vibrations (displacements and stresses). The consequences of this structural damping on the attenuation of the internal fluid pressure are further demonstrated.
ISSN:0889-9746
1095-8622
DOI:10.1016/j.jfluidstructs.2014.10.016