Loading…
Improvement Schemes for Indoor Mobile Location Estimation: A Survey
Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources....
Saved in:
Published in: | Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-32 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23 |
container_end_page | 32 |
container_issue | 2015 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2015 |
creator | Wang, Di Gu, Fuqiang Hu, Xuke Shang, Jianga Yu, Shengsheng |
description | Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research. |
doi_str_mv | 10.1155/2015/397298 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701051548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687068851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AiCs7pybsUvIhSl5dfTb2NMXUw8TAFbyFLE9axNpq0k_33ZtaDePH0vpAPj5dvkpwDugVgbIQRsBEpclyIg2QAjJOMAc0PY0aYZoDJ23FyEsIaIQwMxCCZzOp377amNk2bLvQqhpBa59NZU7o4ntyy2ph07rRqK9ek09BW9Xe8S8fpovNbsztNjqzaBHP2M4fJ6_30ZfKYzZ8fZpPxPNNEFG1mLVviEitmCgYFEcxwrmkBmvGSWI6FRorikhFKrMJGcL40jFpAlMRHhckwuer3xos_OhNaWVdBm81GNcZ1QUKOADFgVER6-YeuXeebeJ0ELmIPGHMS1U2vtHcheGPlu4-_8zsJSO4LlftCZV9o1Ne9XlVNqT6rf_BFj00kxqpfOCc5YeQL4UJ8bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681232263</pqid></control><display><type>article</type><title>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</title><source>Access via ProQuest (Open Access)</source><source>IngentaConnect Journals</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Wang, Di ; Gu, Fuqiang ; Hu, Xuke ; Shang, Jianga ; Yu, Shengsheng</creator><contributor>Mariano, Paolo Maria</contributor><creatorcontrib>Wang, Di ; Gu, Fuqiang ; Hu, Xuke ; Shang, Jianga ; Yu, Shengsheng ; Mariano, Paolo Maria</creatorcontrib><description>Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/397298</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Computer engineering ; Dead reckoning ; Error analysis ; Extended Kalman filter ; Fingerprinting ; Fuses ; Indoor ; Indoor environments ; Kalman filters ; Localization ; Localization method ; Markov chains ; Matching ; Mathematical models ; Mathematical problems ; Optimization ; Performance evaluation ; Position (location) ; Probabilistic methods ; Triangulation ; Ubiquitous computing</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-32</ispartof><rights>Copyright © 2015 Jianga Shang et al.</rights><rights>Copyright © 2015 Jianga Shang et al. Jianga Shang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</citedby><cites>FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</cites><orcidid>0000-0002-3408-982X ; 0000-0001-7571-8015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1681232263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1681232263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Mariano, Paolo Maria</contributor><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Hu, Xuke</creatorcontrib><creatorcontrib>Shang, Jianga</creatorcontrib><creatorcontrib>Yu, Shengsheng</creatorcontrib><title>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</title><title>Mathematical problems in engineering</title><description>Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer engineering</subject><subject>Dead reckoning</subject><subject>Error analysis</subject><subject>Extended Kalman filter</subject><subject>Fingerprinting</subject><subject>Fuses</subject><subject>Indoor</subject><subject>Indoor environments</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Localization method</subject><subject>Markov chains</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Position (location)</subject><subject>Probabilistic methods</subject><subject>Triangulation</subject><subject>Ubiquitous computing</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0M9LwzAUB_AiCs7pybsUvIhSl5dfTb2NMXUw8TAFbyFLE9axNpq0k_33ZtaDePH0vpAPj5dvkpwDugVgbIQRsBEpclyIg2QAjJOMAc0PY0aYZoDJ23FyEsIaIQwMxCCZzOp377amNk2bLvQqhpBa59NZU7o4ntyy2ph07rRqK9ek09BW9Xe8S8fpovNbsztNjqzaBHP2M4fJ6_30ZfKYzZ8fZpPxPNNEFG1mLVviEitmCgYFEcxwrmkBmvGSWI6FRorikhFKrMJGcL40jFpAlMRHhckwuer3xos_OhNaWVdBm81GNcZ1QUKOADFgVER6-YeuXeebeJ0ELmIPGHMS1U2vtHcheGPlu4-_8zsJSO4LlftCZV9o1Ne9XlVNqT6rf_BFj00kxqpfOCc5YeQL4UJ8bw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wang, Di</creator><creator>Gu, Fuqiang</creator><creator>Hu, Xuke</creator><creator>Shang, Jianga</creator><creator>Yu, Shengsheng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0001-7571-8015</orcidid></search><sort><creationdate>20150101</creationdate><title>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</title><author>Wang, Di ; Gu, Fuqiang ; Hu, Xuke ; Shang, Jianga ; Yu, Shengsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer engineering</topic><topic>Dead reckoning</topic><topic>Error analysis</topic><topic>Extended Kalman filter</topic><topic>Fingerprinting</topic><topic>Fuses</topic><topic>Indoor</topic><topic>Indoor environments</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Localization method</topic><topic>Markov chains</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Position (location)</topic><topic>Probabilistic methods</topic><topic>Triangulation</topic><topic>Ubiquitous computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Hu, Xuke</creatorcontrib><creatorcontrib>Shang, Jianga</creatorcontrib><creatorcontrib>Yu, Shengsheng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Di</au><au>Gu, Fuqiang</au><au>Hu, Xuke</au><au>Shang, Jianga</au><au>Yu, Shengsheng</au><au>Mariano, Paolo Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>32</epage><pages>1-32</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/397298</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0001-7571-8015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-32 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701051548 |
source | Access via ProQuest (Open Access); IngentaConnect Journals; Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Accuracy Algorithms Computer engineering Dead reckoning Error analysis Extended Kalman filter Fingerprinting Fuses Indoor Indoor environments Kalman filters Localization Localization method Markov chains Matching Mathematical models Mathematical problems Optimization Performance evaluation Position (location) Probabilistic methods Triangulation Ubiquitous computing |
title | Improvement Schemes for Indoor Mobile Location Estimation: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20Schemes%20for%20Indoor%20Mobile%20Location%20Estimation:%20A%20Survey&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Di&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/397298&rft_dat=%3Cproquest_cross%3E3687068851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1681232263&rft_id=info:pmid/&rfr_iscdi=true |