Loading…

Improvement Schemes for Indoor Mobile Location Estimation: A Survey

Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources....

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-32
Main Authors: Wang, Di, Gu, Fuqiang, Hu, Xuke, Shang, Jianga, Yu, Shengsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23
cites cdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23
container_end_page 32
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Wang, Di
Gu, Fuqiang
Hu, Xuke
Shang, Jianga
Yu, Shengsheng
description Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.
doi_str_mv 10.1155/2015/397298
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701051548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687068851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AiCs7pybsUvIhSl5dfTb2NMXUw8TAFbyFLE9axNpq0k_33ZtaDePH0vpAPj5dvkpwDugVgbIQRsBEpclyIg2QAjJOMAc0PY0aYZoDJ23FyEsIaIQwMxCCZzOp377amNk2bLvQqhpBa59NZU7o4ntyy2ph07rRqK9ek09BW9Xe8S8fpovNbsztNjqzaBHP2M4fJ6_30ZfKYzZ8fZpPxPNNEFG1mLVviEitmCgYFEcxwrmkBmvGSWI6FRorikhFKrMJGcL40jFpAlMRHhckwuer3xos_OhNaWVdBm81GNcZ1QUKOADFgVER6-YeuXeebeJ0ELmIPGHMS1U2vtHcheGPlu4-_8zsJSO4LlftCZV9o1Ne9XlVNqT6rf_BFj00kxqpfOCc5YeQL4UJ8bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681232263</pqid></control><display><type>article</type><title>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</title><source>Access via ProQuest (Open Access)</source><source>IngentaConnect Journals</source><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Wang, Di ; Gu, Fuqiang ; Hu, Xuke ; Shang, Jianga ; Yu, Shengsheng</creator><contributor>Mariano, Paolo Maria</contributor><creatorcontrib>Wang, Di ; Gu, Fuqiang ; Hu, Xuke ; Shang, Jianga ; Yu, Shengsheng ; Mariano, Paolo Maria</creatorcontrib><description>Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/397298</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Computer engineering ; Dead reckoning ; Error analysis ; Extended Kalman filter ; Fingerprinting ; Fuses ; Indoor ; Indoor environments ; Kalman filters ; Localization ; Localization method ; Markov chains ; Matching ; Mathematical models ; Mathematical problems ; Optimization ; Performance evaluation ; Position (location) ; Probabilistic methods ; Triangulation ; Ubiquitous computing</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-32</ispartof><rights>Copyright © 2015 Jianga Shang et al.</rights><rights>Copyright © 2015 Jianga Shang et al. Jianga Shang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</citedby><cites>FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</cites><orcidid>0000-0002-3408-982X ; 0000-0001-7571-8015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1681232263/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1681232263?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Mariano, Paolo Maria</contributor><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Hu, Xuke</creatorcontrib><creatorcontrib>Shang, Jianga</creatorcontrib><creatorcontrib>Yu, Shengsheng</creatorcontrib><title>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</title><title>Mathematical problems in engineering</title><description>Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computer engineering</subject><subject>Dead reckoning</subject><subject>Error analysis</subject><subject>Extended Kalman filter</subject><subject>Fingerprinting</subject><subject>Fuses</subject><subject>Indoor</subject><subject>Indoor environments</subject><subject>Kalman filters</subject><subject>Localization</subject><subject>Localization method</subject><subject>Markov chains</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Position (location)</subject><subject>Probabilistic methods</subject><subject>Triangulation</subject><subject>Ubiquitous computing</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0M9LwzAUB_AiCs7pybsUvIhSl5dfTb2NMXUw8TAFbyFLE9axNpq0k_33ZtaDePH0vpAPj5dvkpwDugVgbIQRsBEpclyIg2QAjJOMAc0PY0aYZoDJ23FyEsIaIQwMxCCZzOp377amNk2bLvQqhpBa59NZU7o4ntyy2ph07rRqK9ek09BW9Xe8S8fpovNbsztNjqzaBHP2M4fJ6_30ZfKYzZ8fZpPxPNNEFG1mLVviEitmCgYFEcxwrmkBmvGSWI6FRorikhFKrMJGcL40jFpAlMRHhckwuer3xos_OhNaWVdBm81GNcZ1QUKOADFgVER6-YeuXeebeJ0ELmIPGHMS1U2vtHcheGPlu4-_8zsJSO4LlftCZV9o1Ne9XlVNqT6rf_BFj00kxqpfOCc5YeQL4UJ8bw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wang, Di</creator><creator>Gu, Fuqiang</creator><creator>Hu, Xuke</creator><creator>Shang, Jianga</creator><creator>Yu, Shengsheng</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0001-7571-8015</orcidid></search><sort><creationdate>20150101</creationdate><title>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</title><author>Wang, Di ; Gu, Fuqiang ; Hu, Xuke ; Shang, Jianga ; Yu, Shengsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computer engineering</topic><topic>Dead reckoning</topic><topic>Error analysis</topic><topic>Extended Kalman filter</topic><topic>Fingerprinting</topic><topic>Fuses</topic><topic>Indoor</topic><topic>Indoor environments</topic><topic>Kalman filters</topic><topic>Localization</topic><topic>Localization method</topic><topic>Markov chains</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Position (location)</topic><topic>Probabilistic methods</topic><topic>Triangulation</topic><topic>Ubiquitous computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Gu, Fuqiang</creatorcontrib><creatorcontrib>Hu, Xuke</creatorcontrib><creatorcontrib>Shang, Jianga</creatorcontrib><creatorcontrib>Yu, Shengsheng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Di</au><au>Gu, Fuqiang</au><au>Hu, Xuke</au><au>Shang, Jianga</au><au>Yu, Shengsheng</au><au>Mariano, Paolo Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement Schemes for Indoor Mobile Location Estimation: A Survey</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>32</epage><pages>1-32</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation,including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus onthe location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/397298</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-3408-982X</orcidid><orcidid>https://orcid.org/0000-0001-7571-8015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-32
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1701051548
source Access via ProQuest (Open Access); IngentaConnect Journals; Wiley-Blackwell Open Access Titles(OpenAccess)
subjects Accuracy
Algorithms
Computer engineering
Dead reckoning
Error analysis
Extended Kalman filter
Fingerprinting
Fuses
Indoor
Indoor environments
Kalman filters
Localization
Localization method
Markov chains
Matching
Mathematical models
Mathematical problems
Optimization
Performance evaluation
Position (location)
Probabilistic methods
Triangulation
Ubiquitous computing
title Improvement Schemes for Indoor Mobile Location Estimation: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20Schemes%20for%20Indoor%20Mobile%20Location%20Estimation:%20A%20Survey&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Di&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=32&rft.pages=1-32&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/397298&rft_dat=%3Cproquest_cross%3E3687068851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-ff5b2d2a5e9519385e66c491c56d3f628c0a42d5343fa2e866be54f1043628a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1681232263&rft_id=info:pmid/&rfr_iscdi=true