Loading…

Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation

The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by c...

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2013-01, Vol.6 (1), p.97-104
Main Authors: Sohn, Jung Inn, Cha, Seung Nam, Song, Byong Gwon, Lee, Sanghyo, Kim, Seong Min, Ku, JiYeon, Kim, Hyun Jin, Park, Young Jun, Choi, Byoung Lyong, Wang, Zhong Lin, Kim, Jong Min, Kim, Kinam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63
cites cdi_FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63
container_end_page 104
container_issue 1
container_start_page 97
container_title Energy & environmental science
container_volume 6
creator Sohn, Jung Inn
Cha, Seung Nam
Song, Byong Gwon
Lee, Sanghyo
Kim, Seong Min
Ku, JiYeon
Kim, Hyun Jin
Park, Young Jun
Choi, Byoung Lyong
Wang, Zhong Lin
Kim, Jong Min
Kim, Kinam
description The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by controlling both the carrier density and the interfacial energy in a semiconducting ZnO nanowire (NW), thereby achieving its intrinsic efficiency limits. A SPENG with carrier-controlled ZnO NWs exhibits excellent energy harvesting characteristics with an average power density of 0.9 mW cm super(-3), as well as a near 50 fold increase in both output voltage and current compared to those of a conventional ZnO NW. In addition, we demonstrate for the first time that an optimized SPENG is large enough and very suitable to drive electrophoretic ink displays based on voltage-drive systems. This fundamental progress makes it possible to fabricate high performance nanogenerators for viable industrial applications in portable/wearable personal electronics such as electronic papers and smart identity cards.
doi_str_mv 10.1039/c2ee23404a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701052942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560116451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63</originalsourceid><addsrcrecordid>eNqF0U1Lw0AQBuBFFKzVi79gjyJE9zvdYynxAwQveg6TzWxcSTd1Nz1U_PE2Vs8ehhmGh4HhJeSSsxvOpL11AlFIxRQckRkvtSp0yczx32ysOCVnOb8zZgQr7Yx8VbELETGF2NHBU_Q-uIDR7Wgf1mGc1j4hUgcpBUyZQmz3RUMcMXlwAXqKEVO3o82BUD-kSWB8g-imA5uAnwP26MYUHO0mDmMY4jk58dBnvPjtc_J6V72sHoqn5_vH1fKpcErpsUBuwCBYzxZiYU2jvYW2VPsfVAN80ZQGpbJeeY5CtyVruHQSOEiOCGVr5JxcHe5u0vCxxTzW65Ad9j1EHLa55iXjTAurxP9UG8a5UZrv6fWBujTknNDXmxTWkHY1Z_WURr0SVfWTxlJ-A1B6ftc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560116451</pqid></control><display><type>article</type><title>Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation</title><source>Royal Society of Chemistry</source><creator>Sohn, Jung Inn ; Cha, Seung Nam ; Song, Byong Gwon ; Lee, Sanghyo ; Kim, Seong Min ; Ku, JiYeon ; Kim, Hyun Jin ; Park, Young Jun ; Choi, Byoung Lyong ; Wang, Zhong Lin ; Kim, Jong Min ; Kim, Kinam</creator><creatorcontrib>Sohn, Jung Inn ; Cha, Seung Nam ; Song, Byong Gwon ; Lee, Sanghyo ; Kim, Seong Min ; Ku, JiYeon ; Kim, Hyun Jin ; Park, Young Jun ; Choi, Byoung Lyong ; Wang, Zhong Lin ; Kim, Jong Min ; Kim, Kinam</creatorcontrib><description>The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by controlling both the carrier density and the interfacial energy in a semiconducting ZnO nanowire (NW), thereby achieving its intrinsic efficiency limits. A SPENG with carrier-controlled ZnO NWs exhibits excellent energy harvesting characteristics with an average power density of 0.9 mW cm super(-3), as well as a near 50 fold increase in both output voltage and current compared to those of a conventional ZnO NW. In addition, we demonstrate for the first time that an optimized SPENG is large enough and very suitable to drive electrophoretic ink displays based on voltage-drive systems. This fundamental progress makes it possible to fabricate high performance nanogenerators for viable industrial applications in portable/wearable personal electronics such as electronic papers and smart identity cards.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c2ee23404a</identifier><language>eng</language><subject>Carrier density ; Density ; Electronics ; Energy management ; Harvesting ; Nanostructure ; Piezoelectricity ; Zinc oxide</subject><ispartof>Energy &amp; environmental science, 2013-01, Vol.6 (1), p.97-104</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63</citedby><cites>FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sohn, Jung Inn</creatorcontrib><creatorcontrib>Cha, Seung Nam</creatorcontrib><creatorcontrib>Song, Byong Gwon</creatorcontrib><creatorcontrib>Lee, Sanghyo</creatorcontrib><creatorcontrib>Kim, Seong Min</creatorcontrib><creatorcontrib>Ku, JiYeon</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Park, Young Jun</creatorcontrib><creatorcontrib>Choi, Byoung Lyong</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><creatorcontrib>Kim, Kinam</creatorcontrib><title>Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation</title><title>Energy &amp; environmental science</title><description>The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by controlling both the carrier density and the interfacial energy in a semiconducting ZnO nanowire (NW), thereby achieving its intrinsic efficiency limits. A SPENG with carrier-controlled ZnO NWs exhibits excellent energy harvesting characteristics with an average power density of 0.9 mW cm super(-3), as well as a near 50 fold increase in both output voltage and current compared to those of a conventional ZnO NW. In addition, we demonstrate for the first time that an optimized SPENG is large enough and very suitable to drive electrophoretic ink displays based on voltage-drive systems. This fundamental progress makes it possible to fabricate high performance nanogenerators for viable industrial applications in portable/wearable personal electronics such as electronic papers and smart identity cards.</description><subject>Carrier density</subject><subject>Density</subject><subject>Electronics</subject><subject>Energy management</subject><subject>Harvesting</subject><subject>Nanostructure</subject><subject>Piezoelectricity</subject><subject>Zinc oxide</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U1Lw0AQBuBFFKzVi79gjyJE9zvdYynxAwQveg6TzWxcSTd1Nz1U_PE2Vs8ehhmGh4HhJeSSsxvOpL11AlFIxRQckRkvtSp0yczx32ysOCVnOb8zZgQr7Yx8VbELETGF2NHBU_Q-uIDR7Wgf1mGc1j4hUgcpBUyZQmz3RUMcMXlwAXqKEVO3o82BUD-kSWB8g-imA5uAnwP26MYUHO0mDmMY4jk58dBnvPjtc_J6V72sHoqn5_vH1fKpcErpsUBuwCBYzxZiYU2jvYW2VPsfVAN80ZQGpbJeeY5CtyVruHQSOEiOCGVr5JxcHe5u0vCxxTzW65Ad9j1EHLa55iXjTAurxP9UG8a5UZrv6fWBujTknNDXmxTWkHY1Z_WURr0SVfWTxlJ-A1B6ftc</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sohn, Jung Inn</creator><creator>Cha, Seung Nam</creator><creator>Song, Byong Gwon</creator><creator>Lee, Sanghyo</creator><creator>Kim, Seong Min</creator><creator>Ku, JiYeon</creator><creator>Kim, Hyun Jin</creator><creator>Park, Young Jun</creator><creator>Choi, Byoung Lyong</creator><creator>Wang, Zhong Lin</creator><creator>Kim, Jong Min</creator><creator>Kim, Kinam</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation</title><author>Sohn, Jung Inn ; Cha, Seung Nam ; Song, Byong Gwon ; Lee, Sanghyo ; Kim, Seong Min ; Ku, JiYeon ; Kim, Hyun Jin ; Park, Young Jun ; Choi, Byoung Lyong ; Wang, Zhong Lin ; Kim, Jong Min ; Kim, Kinam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carrier density</topic><topic>Density</topic><topic>Electronics</topic><topic>Energy management</topic><topic>Harvesting</topic><topic>Nanostructure</topic><topic>Piezoelectricity</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Jung Inn</creatorcontrib><creatorcontrib>Cha, Seung Nam</creatorcontrib><creatorcontrib>Song, Byong Gwon</creatorcontrib><creatorcontrib>Lee, Sanghyo</creatorcontrib><creatorcontrib>Kim, Seong Min</creatorcontrib><creatorcontrib>Ku, JiYeon</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Park, Young Jun</creatorcontrib><creatorcontrib>Choi, Byoung Lyong</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><creatorcontrib>Kim, Kinam</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Jung Inn</au><au>Cha, Seung Nam</au><au>Song, Byong Gwon</au><au>Lee, Sanghyo</au><au>Kim, Seong Min</au><au>Ku, JiYeon</au><au>Kim, Hyun Jin</au><au>Park, Young Jun</au><au>Choi, Byoung Lyong</au><au>Wang, Zhong Lin</au><au>Kim, Jong Min</au><au>Kim, Kinam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>6</volume><issue>1</issue><spage>97</spage><epage>104</epage><pages>97-104</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The energy harvesting efficiency is of tremendous importance for the realization of a high output-power nanogenerator serving as the basis for self-powered electronics. Here we report that the device performance of a sound-driven piezoelectric energy nanogenerator (SPENG) is remarkably improved by controlling both the carrier density and the interfacial energy in a semiconducting ZnO nanowire (NW), thereby achieving its intrinsic efficiency limits. A SPENG with carrier-controlled ZnO NWs exhibits excellent energy harvesting characteristics with an average power density of 0.9 mW cm super(-3), as well as a near 50 fold increase in both output voltage and current compared to those of a conventional ZnO NW. In addition, we demonstrate for the first time that an optimized SPENG is large enough and very suitable to drive electrophoretic ink displays based on voltage-drive systems. This fundamental progress makes it possible to fabricate high performance nanogenerators for viable industrial applications in portable/wearable personal electronics such as electronic papers and smart identity cards.</abstract><doi>10.1039/c2ee23404a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2013-01, Vol.6 (1), p.97-104
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_1701052942
source Royal Society of Chemistry
subjects Carrier density
Density
Electronics
Energy management
Harvesting
Nanostructure
Piezoelectricity
Zinc oxide
title Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20efficiency%20limiting%20free%20carriers%20and%20an%20interfacial%20energy%20barrier%20for%20an%20enhancing%20piezoelectric%20generation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Sohn,%20Jung%20Inn&rft.date=2013-01-01&rft.volume=6&rft.issue=1&rft.spage=97&rft.epage=104&rft.pages=97-104&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c2ee23404a&rft_dat=%3Cproquest_cross%3E1560116451%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-e16a6ea9f082896b5f9ad740064ba18b76e349f4f1e25d70b13c3a1a31eea7d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1560116451&rft_id=info:pmid/&rfr_iscdi=true