Loading…
Transport studies on La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) manganite films
In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO sub(3) (STO) substrate using low cos...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2015-05, Vol.465, p.71-80 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 80 |
container_issue | |
container_start_page | 71 |
container_title | Physica. B, Condensed matter |
container_volume | 465 |
creator | Solanki, P S Doshi, R R Ravalia, Ashish Keshvani, M J Pandya, Swati Ganesan, V Shah, N A Kuberkar, D G |
description | In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO sub(3) (STO) substrate using low cost chemical solution deposition (CSD) method. Films with similar compositions were also grown using sophisticated pulsed laser deposition (PLD) technique and results of structural and transport studies obtained for CSD grown films were compared with PLD grown films. Structural studies show that all the CSD and PLD grown films possess single crystalline nature with compressive and tensile strain, respectively. Surface morphology, studied using atomic force microscope (AFM), reveals the island like grain morphology in CSD grown films while PLD grown films possess smooth film surfaces. Carrier density dependent transport properties of the films have been discussed in the context of zener double exchange (ZDE) mechanism. Lower resistivity and higher transition temperature (T sub(P)) observed in CSD grown films as compared to PLD grown films have been discussed in the light of structural strain and surface morphology of the films. Various models and mechanisms have been employed to understand the charge transport in CSD and PLD grown films. Also, observation of low temperature resistivity minima behavior in all the CSD and PLD grown LPSMO films has been explained in the context of electron-electron scattering mechanism. |
doi_str_mv | 10.1016/j.physb.2015.02.019 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701054230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701054230</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17010542303</originalsourceid><addsrcrecordid>eNqVir0OgjAURjto4u8TuHSEgXpvEZDZaBw0kshOqlaFQEEuJPj2GvUFPMt3vuQwNkMQCOjPM1Hdn3QSEtATIAVg2GNDCCU6C0_6AzYiyuANBjhkUVwrQ1VZN5ya9pJq4qXhO8WpPVkglk5nR_XvSPv41c7em8PHXJsXytyUSRvNr2le0IT1ryonPf3tmFmbdbzaOlVdPlpNTVKkdNZ5rowuW0owAARvIV1w_0hfxDtF3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701054230</pqid></control><display><type>article</type><title>Transport studies on La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) manganite films</title><source>ScienceDirect Freedom Collection</source><creator>Solanki, P S ; Doshi, R R ; Ravalia, Ashish ; Keshvani, M J ; Pandya, Swati ; Ganesan, V ; Shah, N A ; Kuberkar, D G</creator><creatorcontrib>Solanki, P S ; Doshi, R R ; Ravalia, Ashish ; Keshvani, M J ; Pandya, Swati ; Ganesan, V ; Shah, N A ; Kuberkar, D G</creatorcontrib><description>In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO sub(3) (STO) substrate using low cost chemical solution deposition (CSD) method. Films with similar compositions were also grown using sophisticated pulsed laser deposition (PLD) technique and results of structural and transport studies obtained for CSD grown films were compared with PLD grown films. Structural studies show that all the CSD and PLD grown films possess single crystalline nature with compressive and tensile strain, respectively. Surface morphology, studied using atomic force microscope (AFM), reveals the island like grain morphology in CSD grown films while PLD grown films possess smooth film surfaces. Carrier density dependent transport properties of the films have been discussed in the context of zener double exchange (ZDE) mechanism. Lower resistivity and higher transition temperature (T sub(P)) observed in CSD grown films as compared to PLD grown films have been discussed in the light of structural strain and surface morphology of the films. Various models and mechanisms have been employed to understand the charge transport in CSD and PLD grown films. Also, observation of low temperature resistivity minima behavior in all the CSD and PLD grown LPSMO films has been explained in the context of electron-electron scattering mechanism.</description><identifier>ISSN: 0921-4526</identifier><identifier>DOI: 10.1016/j.physb.2015.02.019</identifier><language>eng</language><subject>Carrier density ; Compressive properties ; Condensed matter ; Crystal structure ; Electrical resistivity ; Exchange ; Manganites ; Morphology ; Transport</subject><ispartof>Physica. B, Condensed matter, 2015-05, Vol.465, p.71-80</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Solanki, P S</creatorcontrib><creatorcontrib>Doshi, R R</creatorcontrib><creatorcontrib>Ravalia, Ashish</creatorcontrib><creatorcontrib>Keshvani, M J</creatorcontrib><creatorcontrib>Pandya, Swati</creatorcontrib><creatorcontrib>Ganesan, V</creatorcontrib><creatorcontrib>Shah, N A</creatorcontrib><creatorcontrib>Kuberkar, D G</creatorcontrib><title>Transport studies on La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) manganite films</title><title>Physica. B, Condensed matter</title><description>In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO sub(3) (STO) substrate using low cost chemical solution deposition (CSD) method. Films with similar compositions were also grown using sophisticated pulsed laser deposition (PLD) technique and results of structural and transport studies obtained for CSD grown films were compared with PLD grown films. Structural studies show that all the CSD and PLD grown films possess single crystalline nature with compressive and tensile strain, respectively. Surface morphology, studied using atomic force microscope (AFM), reveals the island like grain morphology in CSD grown films while PLD grown films possess smooth film surfaces. Carrier density dependent transport properties of the films have been discussed in the context of zener double exchange (ZDE) mechanism. Lower resistivity and higher transition temperature (T sub(P)) observed in CSD grown films as compared to PLD grown films have been discussed in the light of structural strain and surface morphology of the films. Various models and mechanisms have been employed to understand the charge transport in CSD and PLD grown films. Also, observation of low temperature resistivity minima behavior in all the CSD and PLD grown LPSMO films has been explained in the context of electron-electron scattering mechanism.</description><subject>Carrier density</subject><subject>Compressive properties</subject><subject>Condensed matter</subject><subject>Crystal structure</subject><subject>Electrical resistivity</subject><subject>Exchange</subject><subject>Manganites</subject><subject>Morphology</subject><subject>Transport</subject><issn>0921-4526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVir0OgjAURjto4u8TuHSEgXpvEZDZaBw0kshOqlaFQEEuJPj2GvUFPMt3vuQwNkMQCOjPM1Hdn3QSEtATIAVg2GNDCCU6C0_6AzYiyuANBjhkUVwrQ1VZN5ya9pJq4qXhO8WpPVkglk5nR_XvSPv41c7em8PHXJsXytyUSRvNr2le0IT1ryonPf3tmFmbdbzaOlVdPlpNTVKkdNZ5rowuW0owAARvIV1w_0hfxDtF3g</recordid><startdate>20150515</startdate><enddate>20150515</enddate><creator>Solanki, P S</creator><creator>Doshi, R R</creator><creator>Ravalia, Ashish</creator><creator>Keshvani, M J</creator><creator>Pandya, Swati</creator><creator>Ganesan, V</creator><creator>Shah, N A</creator><creator>Kuberkar, D G</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150515</creationdate><title>Transport studies on La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) manganite films</title><author>Solanki, P S ; Doshi, R R ; Ravalia, Ashish ; Keshvani, M J ; Pandya, Swati ; Ganesan, V ; Shah, N A ; Kuberkar, D G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17010542303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carrier density</topic><topic>Compressive properties</topic><topic>Condensed matter</topic><topic>Crystal structure</topic><topic>Electrical resistivity</topic><topic>Exchange</topic><topic>Manganites</topic><topic>Morphology</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solanki, P S</creatorcontrib><creatorcontrib>Doshi, R R</creatorcontrib><creatorcontrib>Ravalia, Ashish</creatorcontrib><creatorcontrib>Keshvani, M J</creatorcontrib><creatorcontrib>Pandya, Swati</creatorcontrib><creatorcontrib>Ganesan, V</creatorcontrib><creatorcontrib>Shah, N A</creatorcontrib><creatorcontrib>Kuberkar, D G</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solanki, P S</au><au>Doshi, R R</au><au>Ravalia, Ashish</au><au>Keshvani, M J</au><au>Pandya, Swati</au><au>Ganesan, V</au><au>Shah, N A</au><au>Kuberkar, D G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport studies on La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) manganite films</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2015-05-15</date><risdate>2015</risdate><volume>465</volume><spage>71</spage><epage>80</epage><pages>71-80</pages><issn>0921-4526</issn><abstract>In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO sub(3) (STO) substrate using low cost chemical solution deposition (CSD) method. Films with similar compositions were also grown using sophisticated pulsed laser deposition (PLD) technique and results of structural and transport studies obtained for CSD grown films were compared with PLD grown films. Structural studies show that all the CSD and PLD grown films possess single crystalline nature with compressive and tensile strain, respectively. Surface morphology, studied using atomic force microscope (AFM), reveals the island like grain morphology in CSD grown films while PLD grown films possess smooth film surfaces. Carrier density dependent transport properties of the films have been discussed in the context of zener double exchange (ZDE) mechanism. Lower resistivity and higher transition temperature (T sub(P)) observed in CSD grown films as compared to PLD grown films have been discussed in the light of structural strain and surface morphology of the films. Various models and mechanisms have been employed to understand the charge transport in CSD and PLD grown films. Also, observation of low temperature resistivity minima behavior in all the CSD and PLD grown LPSMO films has been explained in the context of electron-electron scattering mechanism.</abstract><doi>10.1016/j.physb.2015.02.019</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2015-05, Vol.465, p.71-80 |
issn | 0921-4526 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701054230 |
source | ScienceDirect Freedom Collection |
subjects | Carrier density Compressive properties Condensed matter Crystal structure Electrical resistivity Exchange Manganites Morphology Transport |
title | Transport studies on La sub(0.8-x)Pr sub(0.2)Sr sub(x)MnO sub(3) manganite films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20studies%20on%20La%20sub(0.8-x)Pr%20sub(0.2)Sr%20sub(x)MnO%20sub(3)%20manganite%20films&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Solanki,%20P%20S&rft.date=2015-05-15&rft.volume=465&rft.spage=71&rft.epage=80&rft.pages=71-80&rft.issn=0921-4526&rft_id=info:doi/10.1016/j.physb.2015.02.019&rft_dat=%3Cproquest%3E1701054230%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_17010542303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701054230&rft_id=info:pmid/&rfr_iscdi=true |