Loading…
Modification of Crystal Shape through Deep Temperature Cycling
The evolution of particle shape is an important consideration in many industrial crystallizations. This article describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to substantially change crystal shape with only a small number of cycle...
Saved in:
Published in: | Industrial & engineering chemistry research 2014-04, Vol.53 (13), p.5325-5336 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93 |
---|---|
cites | cdi_FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93 |
container_end_page | 5336 |
container_issue | 13 |
container_start_page | 5325 |
container_title | Industrial & engineering chemistry research |
container_volume | 53 |
creator | Jiang, Mo Zhu, Xiaoxiang Molaro, Mark C Rasche, Michael L Zhang, Haitao Chadwick, Keith Raimondo, Davide M Kim, Kwang-Ki K Zhou, Lifang Zhu, Zhilong Wong, Min Hao O’Grady, Des Hebrault, Dominique Tedesco, John Braatz, Richard D |
description | The evolution of particle shape is an important consideration in many industrial crystallizations. This article describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to substantially change crystal shape with only a small number of cycles. The growth and dissolution of monosodium glutamate crystals of varying shapes were monitored using in-process attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision and measurement (PVM), and off-line optical microscopy. The growth and dissolution kinetics were estimated in a multidimensional population balance model based on solute concentration and crystal dimension measurements. This model fitted the experimental data with a limited number of parameters of small uncertainty. In addition, with the estimated kinetic parameters, the model predicted the crystal size and shape distribution in a different temperature-cycling experiment reasonably well. In contrast to previous studies that have estimated kinetics along multiple crystal axes in mixed-tank crystallizers, this study implements dissolution terms in the multidimensional population balance model along multiple axes. |
doi_str_mv | 10.1021/ie400859d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701079645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701079645</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93</originalsourceid><addsrcrecordid>eNpt0D9PwzAQBXALgUQpDHyDLEgwBM6xL4kXJJTyTypioMyRHV_aVGkc7GTotyeoiInpLT-90z3GLjncckj4XUMSIEdlj9iMYwIxgsRjNoM8z2PMczxlZyFsAQBRyhm7f3O2qZtKD43rIldHhd-HQbfRx0b3FA0b78b1JloQ9dGKdj15PYyeomJftU23PmcntW4DXfzmnH0-Pa6Kl3j5_vxaPCxjLRQOsZGWQKrpZlLb1JoqMYhUQ8WNEJRlqbHCoABlMVWp0laRNCbNchSpMKTEnF0fenvvvkYKQ7lrQkVtqztyYyh5BhwylUqc6M2BVt6F4Kkue9_stN-XHMqfjcq_jSZ7dbC6CuXWjb6bnvjHfQPQAmTG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701079645</pqid></control><display><type>article</type><title>Modification of Crystal Shape through Deep Temperature Cycling</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Jiang, Mo ; Zhu, Xiaoxiang ; Molaro, Mark C ; Rasche, Michael L ; Zhang, Haitao ; Chadwick, Keith ; Raimondo, Davide M ; Kim, Kwang-Ki K ; Zhou, Lifang ; Zhu, Zhilong ; Wong, Min Hao ; O’Grady, Des ; Hebrault, Dominique ; Tedesco, John ; Braatz, Richard D</creator><creatorcontrib>Jiang, Mo ; Zhu, Xiaoxiang ; Molaro, Mark C ; Rasche, Michael L ; Zhang, Haitao ; Chadwick, Keith ; Raimondo, Davide M ; Kim, Kwang-Ki K ; Zhou, Lifang ; Zhu, Zhilong ; Wong, Min Hao ; O’Grady, Des ; Hebrault, Dominique ; Tedesco, John ; Braatz, Richard D</creatorcontrib><description>The evolution of particle shape is an important consideration in many industrial crystallizations. This article describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to substantially change crystal shape with only a small number of cycles. The growth and dissolution of monosodium glutamate crystals of varying shapes were monitored using in-process attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision and measurement (PVM), and off-line optical microscopy. The growth and dissolution kinetics were estimated in a multidimensional population balance model based on solute concentration and crystal dimension measurements. This model fitted the experimental data with a limited number of parameters of small uncertainty. In addition, with the estimated kinetic parameters, the model predicted the crystal size and shape distribution in a different temperature-cycling experiment reasonably well. In contrast to previous studies that have estimated kinetics along multiple crystal axes in mixed-tank crystallizers, this study implements dissolution terms in the multidimensional population balance model along multiple axes.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie400859d</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Beams (radiation) ; Crystals ; Dissolution ; Mathematical models ; Optical microscopy ; Particle beams ; Particle shape ; Population balance models ; Reflectance</subject><ispartof>Industrial & engineering chemistry research, 2014-04, Vol.53 (13), p.5325-5336</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93</citedby><cites>FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jiang, Mo</creatorcontrib><creatorcontrib>Zhu, Xiaoxiang</creatorcontrib><creatorcontrib>Molaro, Mark C</creatorcontrib><creatorcontrib>Rasche, Michael L</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Chadwick, Keith</creatorcontrib><creatorcontrib>Raimondo, Davide M</creatorcontrib><creatorcontrib>Kim, Kwang-Ki K</creatorcontrib><creatorcontrib>Zhou, Lifang</creatorcontrib><creatorcontrib>Zhu, Zhilong</creatorcontrib><creatorcontrib>Wong, Min Hao</creatorcontrib><creatorcontrib>O’Grady, Des</creatorcontrib><creatorcontrib>Hebrault, Dominique</creatorcontrib><creatorcontrib>Tedesco, John</creatorcontrib><creatorcontrib>Braatz, Richard D</creatorcontrib><title>Modification of Crystal Shape through Deep Temperature Cycling</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The evolution of particle shape is an important consideration in many industrial crystallizations. This article describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to substantially change crystal shape with only a small number of cycles. The growth and dissolution of monosodium glutamate crystals of varying shapes were monitored using in-process attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision and measurement (PVM), and off-line optical microscopy. The growth and dissolution kinetics were estimated in a multidimensional population balance model based on solute concentration and crystal dimension measurements. This model fitted the experimental data with a limited number of parameters of small uncertainty. In addition, with the estimated kinetic parameters, the model predicted the crystal size and shape distribution in a different temperature-cycling experiment reasonably well. In contrast to previous studies that have estimated kinetics along multiple crystal axes in mixed-tank crystallizers, this study implements dissolution terms in the multidimensional population balance model along multiple axes.</description><subject>Beams (radiation)</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Mathematical models</subject><subject>Optical microscopy</subject><subject>Particle beams</subject><subject>Particle shape</subject><subject>Population balance models</subject><subject>Reflectance</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0D9PwzAQBXALgUQpDHyDLEgwBM6xL4kXJJTyTypioMyRHV_aVGkc7GTotyeoiInpLT-90z3GLjncckj4XUMSIEdlj9iMYwIxgsRjNoM8z2PMczxlZyFsAQBRyhm7f3O2qZtKD43rIldHhd-HQbfRx0b3FA0b78b1JloQ9dGKdj15PYyeomJftU23PmcntW4DXfzmnH0-Pa6Kl3j5_vxaPCxjLRQOsZGWQKrpZlLb1JoqMYhUQ8WNEJRlqbHCoABlMVWp0laRNCbNchSpMKTEnF0fenvvvkYKQ7lrQkVtqztyYyh5BhwylUqc6M2BVt6F4Kkue9_stN-XHMqfjcq_jSZ7dbC6CuXWjb6bnvjHfQPQAmTG</recordid><startdate>20140402</startdate><enddate>20140402</enddate><creator>Jiang, Mo</creator><creator>Zhu, Xiaoxiang</creator><creator>Molaro, Mark C</creator><creator>Rasche, Michael L</creator><creator>Zhang, Haitao</creator><creator>Chadwick, Keith</creator><creator>Raimondo, Davide M</creator><creator>Kim, Kwang-Ki K</creator><creator>Zhou, Lifang</creator><creator>Zhu, Zhilong</creator><creator>Wong, Min Hao</creator><creator>O’Grady, Des</creator><creator>Hebrault, Dominique</creator><creator>Tedesco, John</creator><creator>Braatz, Richard D</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140402</creationdate><title>Modification of Crystal Shape through Deep Temperature Cycling</title><author>Jiang, Mo ; Zhu, Xiaoxiang ; Molaro, Mark C ; Rasche, Michael L ; Zhang, Haitao ; Chadwick, Keith ; Raimondo, Davide M ; Kim, Kwang-Ki K ; Zhou, Lifang ; Zhu, Zhilong ; Wong, Min Hao ; O’Grady, Des ; Hebrault, Dominique ; Tedesco, John ; Braatz, Richard D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Beams (radiation)</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Mathematical models</topic><topic>Optical microscopy</topic><topic>Particle beams</topic><topic>Particle shape</topic><topic>Population balance models</topic><topic>Reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Mo</creatorcontrib><creatorcontrib>Zhu, Xiaoxiang</creatorcontrib><creatorcontrib>Molaro, Mark C</creatorcontrib><creatorcontrib>Rasche, Michael L</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Chadwick, Keith</creatorcontrib><creatorcontrib>Raimondo, Davide M</creatorcontrib><creatorcontrib>Kim, Kwang-Ki K</creatorcontrib><creatorcontrib>Zhou, Lifang</creatorcontrib><creatorcontrib>Zhu, Zhilong</creatorcontrib><creatorcontrib>Wong, Min Hao</creatorcontrib><creatorcontrib>O’Grady, Des</creatorcontrib><creatorcontrib>Hebrault, Dominique</creatorcontrib><creatorcontrib>Tedesco, John</creatorcontrib><creatorcontrib>Braatz, Richard D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Mo</au><au>Zhu, Xiaoxiang</au><au>Molaro, Mark C</au><au>Rasche, Michael L</au><au>Zhang, Haitao</au><au>Chadwick, Keith</au><au>Raimondo, Davide M</au><au>Kim, Kwang-Ki K</au><au>Zhou, Lifang</au><au>Zhu, Zhilong</au><au>Wong, Min Hao</au><au>O’Grady, Des</au><au>Hebrault, Dominique</au><au>Tedesco, John</au><au>Braatz, Richard D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Crystal Shape through Deep Temperature Cycling</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2014-04-02</date><risdate>2014</risdate><volume>53</volume><issue>13</issue><spage>5325</spage><epage>5336</epage><pages>5325-5336</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The evolution of particle shape is an important consideration in many industrial crystallizations. This article describes the design of temperature-cycling experiments (between alternating positive and negative supersaturations) to substantially change crystal shape with only a small number of cycles. The growth and dissolution of monosodium glutamate crystals of varying shapes were monitored using in-process attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR), focused beam reflectance measurement (FBRM), particle vision and measurement (PVM), and off-line optical microscopy. The growth and dissolution kinetics were estimated in a multidimensional population balance model based on solute concentration and crystal dimension measurements. This model fitted the experimental data with a limited number of parameters of small uncertainty. In addition, with the estimated kinetic parameters, the model predicted the crystal size and shape distribution in a different temperature-cycling experiment reasonably well. In contrast to previous studies that have estimated kinetics along multiple crystal axes in mixed-tank crystallizers, this study implements dissolution terms in the multidimensional population balance model along multiple axes.</abstract><pub>American Chemical Society</pub><doi>10.1021/ie400859d</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2014-04, Vol.53 (13), p.5325-5336 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701079645 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Beams (radiation) Crystals Dissolution Mathematical models Optical microscopy Particle beams Particle shape Population balance models Reflectance |
title | Modification of Crystal Shape through Deep Temperature Cycling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Crystal%20Shape%20through%20Deep%20Temperature%20Cycling&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Jiang,%20Mo&rft.date=2014-04-02&rft.volume=53&rft.issue=13&rft.spage=5325&rft.epage=5336&rft.pages=5325-5336&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie400859d&rft_dat=%3Cproquest_cross%3E1701079645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a395t-b4de0490552fd6dbc2b55ef0c1b33e776bd3b5309d56969ad9e4bb6785363be93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701079645&rft_id=info:pmid/&rfr_iscdi=true |