Loading…
SO(10) grand unified theories with dynamical Yukawa couplings
Renormalizable SO(10) grand unified theories (GUTs), extended by O(N sub(g)) sub(F) family gauge symmetry, generate minimal supersymmetric Standard Model flavor structure dynamically via vacuum expectation values of "Yukawon" Higgs multiplets. For concrete illustration and calculability, w...
Saved in:
Published in: | Physical review. D, Particles, fields, gravitation, and cosmology Particles, fields, gravitation, and cosmology, 2014-08, Vol.90 (4), Article 045008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Physical review. D, Particles, fields, gravitation, and cosmology |
container_volume | 90 |
creator | Aulakh, Charanjit S. Khosa, Charanjit K. |
description | Renormalizable SO(10) grand unified theories (GUTs), extended by O(N sub(g)) sub(F) family gauge symmetry, generate minimal supersymmetric Standard Model flavor structure dynamically via vacuum expectation values of "Yukawon" Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the 210 [+ in circle] 126 [+ in circle] 126 GUT Higgs system-which were already parameter counting minimal relative to other realistic models. SO(10) fermion Higgs channels 126, 10(120) extend to symmetric (antisymmetric) representations of O(N sub(g)) sub(F), while 210, 126 are symmetric. N sub(g) = 3 dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the 120 Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo superpotential with a pair of symmetric multiplets [phi], S, of which the latter's singlet part S sub(s) breaks supersymmetry and the traceless part S furnishes flat directions to cancel the O(N sub(g)) D-term contributions of the visible sector. Novel dark matter candidates linked to flavor symmetry arise from both the Bajc-Melfo sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light (< 50 GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavor symmetry breaking without the tuning of couplings. |
doi_str_mv | 10.1103/PhysRevD.90.045008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701106373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701106373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963</originalsourceid><addsrcrecordid>eNo1kDtPwzAYRS0EEqXwB5g8liHlsx3b8cCAeEuVingMTJbrR2tIk2InVP33FLVM9w5HV7oHoXMCY0KAXT4vNvnF_9yOFYyh5ADVARoQzqGgTFSH-y6Vqo7RSc6fAIwKKQfo6nU6InCB58k0DvdNDNE73C18m6LPeB27BXabxiyjNTX-6L_M2mDb9qs6NvN8io6CqbM_2-cQvd_fvd08FpPpw9PN9aSwjJZdwYA46nlVQZgFxgN31grnhLVeGu65UDNKKmI9CAVBURpYuX1hpaCuDEqwIRrtdlep_e597vQyZuvr2jS-7bMmErYaBJNsi9IdalObc_JBr1JcmrTRBPSfK_3vSivQO1fsF2NvXZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701106373</pqid></control><display><type>article</type><title>SO(10) grand unified theories with dynamical Yukawa couplings</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Aulakh, Charanjit S. ; Khosa, Charanjit K.</creator><creatorcontrib>Aulakh, Charanjit S. ; Khosa, Charanjit K.</creatorcontrib><description>Renormalizable SO(10) grand unified theories (GUTs), extended by O(N sub(g)) sub(F) family gauge symmetry, generate minimal supersymmetric Standard Model flavor structure dynamically via vacuum expectation values of "Yukawon" Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the 210 [+ in circle] 126 [+ in circle] 126 GUT Higgs system-which were already parameter counting minimal relative to other realistic models. SO(10) fermion Higgs channels 126, 10(120) extend to symmetric (antisymmetric) representations of O(N sub(g)) sub(F), while 210, 126 are symmetric. N sub(g) = 3 dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the 120 Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo superpotential with a pair of symmetric multiplets [phi], S, of which the latter's singlet part S sub(s) breaks supersymmetry and the traceless part S furnishes flat directions to cancel the O(N sub(g)) D-term contributions of the visible sector. Novel dark matter candidates linked to flavor symmetry arise from both the Bajc-Melfo sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light (< 50 GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavor symmetry breaking without the tuning of couplings.</description><identifier>ISSN: 1550-7998</identifier><identifier>EISSN: 1550-2368</identifier><identifier>DOI: 10.1103/PhysRevD.90.045008</identifier><language>eng</language><subject>Broken symmetry ; Channels ; Counting ; Fermions ; Flavours ; Grand Unified Theories ; Mathematical models ; Supersymmetry ; Symmetry</subject><ispartof>Physical review. D, Particles, fields, gravitation, and cosmology, 2014-08, Vol.90 (4), Article 045008</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963</citedby><cites>FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aulakh, Charanjit S.</creatorcontrib><creatorcontrib>Khosa, Charanjit K.</creatorcontrib><title>SO(10) grand unified theories with dynamical Yukawa couplings</title><title>Physical review. D, Particles, fields, gravitation, and cosmology</title><description>Renormalizable SO(10) grand unified theories (GUTs), extended by O(N sub(g)) sub(F) family gauge symmetry, generate minimal supersymmetric Standard Model flavor structure dynamically via vacuum expectation values of "Yukawon" Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the 210 [+ in circle] 126 [+ in circle] 126 GUT Higgs system-which were already parameter counting minimal relative to other realistic models. SO(10) fermion Higgs channels 126, 10(120) extend to symmetric (antisymmetric) representations of O(N sub(g)) sub(F), while 210, 126 are symmetric. N sub(g) = 3 dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the 120 Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo superpotential with a pair of symmetric multiplets [phi], S, of which the latter's singlet part S sub(s) breaks supersymmetry and the traceless part S furnishes flat directions to cancel the O(N sub(g)) D-term contributions of the visible sector. Novel dark matter candidates linked to flavor symmetry arise from both the Bajc-Melfo sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light (< 50 GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavor symmetry breaking without the tuning of couplings.</description><subject>Broken symmetry</subject><subject>Channels</subject><subject>Counting</subject><subject>Fermions</subject><subject>Flavours</subject><subject>Grand Unified Theories</subject><subject>Mathematical models</subject><subject>Supersymmetry</subject><subject>Symmetry</subject><issn>1550-7998</issn><issn>1550-2368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kDtPwzAYRS0EEqXwB5g8liHlsx3b8cCAeEuVingMTJbrR2tIk2InVP33FLVM9w5HV7oHoXMCY0KAXT4vNvnF_9yOFYyh5ADVARoQzqGgTFSH-y6Vqo7RSc6fAIwKKQfo6nU6InCB58k0DvdNDNE73C18m6LPeB27BXabxiyjNTX-6L_M2mDb9qs6NvN8io6CqbM_2-cQvd_fvd08FpPpw9PN9aSwjJZdwYA46nlVQZgFxgN31grnhLVeGu65UDNKKmI9CAVBURpYuX1hpaCuDEqwIRrtdlep_e597vQyZuvr2jS-7bMmErYaBJNsi9IdalObc_JBr1JcmrTRBPSfK_3vSivQO1fsF2NvXZo</recordid><startdate>20140806</startdate><enddate>20140806</enddate><creator>Aulakh, Charanjit S.</creator><creator>Khosa, Charanjit K.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140806</creationdate><title>SO(10) grand unified theories with dynamical Yukawa couplings</title><author>Aulakh, Charanjit S. ; Khosa, Charanjit K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Broken symmetry</topic><topic>Channels</topic><topic>Counting</topic><topic>Fermions</topic><topic>Flavours</topic><topic>Grand Unified Theories</topic><topic>Mathematical models</topic><topic>Supersymmetry</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Aulakh, Charanjit S.</creatorcontrib><creatorcontrib>Khosa, Charanjit K.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aulakh, Charanjit S.</au><au>Khosa, Charanjit K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SO(10) grand unified theories with dynamical Yukawa couplings</atitle><jtitle>Physical review. D, Particles, fields, gravitation, and cosmology</jtitle><date>2014-08-06</date><risdate>2014</risdate><volume>90</volume><issue>4</issue><artnum>045008</artnum><issn>1550-7998</issn><eissn>1550-2368</eissn><abstract>Renormalizable SO(10) grand unified theories (GUTs), extended by O(N sub(g)) sub(F) family gauge symmetry, generate minimal supersymmetric Standard Model flavor structure dynamically via vacuum expectation values of "Yukawon" Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the 210 [+ in circle] 126 [+ in circle] 126 GUT Higgs system-which were already parameter counting minimal relative to other realistic models. SO(10) fermion Higgs channels 126, 10(120) extend to symmetric (antisymmetric) representations of O(N sub(g)) sub(F), while 210, 126 are symmetric. N sub(g) = 3 dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the 120 Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo superpotential with a pair of symmetric multiplets [phi], S, of which the latter's singlet part S sub(s) breaks supersymmetry and the traceless part S furnishes flat directions to cancel the O(N sub(g)) D-term contributions of the visible sector. Novel dark matter candidates linked to flavor symmetry arise from both the Bajc-Melfo sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light (< 50 GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavor symmetry breaking without the tuning of couplings.</abstract><doi>10.1103/PhysRevD.90.045008</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7998 |
ispartof | Physical review. D, Particles, fields, gravitation, and cosmology, 2014-08, Vol.90 (4), Article 045008 |
issn | 1550-7998 1550-2368 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701106373 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Broken symmetry Channels Counting Fermions Flavours Grand Unified Theories Mathematical models Supersymmetry Symmetry |
title | SO(10) grand unified theories with dynamical Yukawa couplings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SO(10)%20grand%20unified%20theories%20with%20dynamical%20Yukawa%20couplings&rft.jtitle=Physical%20review.%20D,%20Particles,%20fields,%20gravitation,%20and%20cosmology&rft.au=Aulakh,%20Charanjit%20S.&rft.date=2014-08-06&rft.volume=90&rft.issue=4&rft.artnum=045008&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.90.045008&rft_dat=%3Cproquest_cross%3E1701106373%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-301d2e5880fbf35f5dcc6dd6cce7a5e569b2181ce0690f922f34045c762d4f963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701106373&rft_id=info:pmid/&rfr_iscdi=true |