Loading…
Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution
The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid‐stable HER catalysts. A nanohybrid that consists of carbon nanotub...
Saved in:
Published in: | Angewandte Chemie International Edition 2014-06, Vol.53 (26), p.6710-6714 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid‐stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low‐temperature phosphidation of a Co3O4/CNT precursor. As a novel non‐noble‐metal HER catalyst operating in acidic electrolytes, the nanohybrid exhibits an onset overpotential of as low as 40 mV, a Tafel slope of 54 mV dec−1, an exchange current density of 0.13 mA cm−2, and a Faradaic efficiency of nearly 100 %. This catalyst maintains its catalytic activity for at least 18 hours and only requires overpotentials of 70 and 122 mV to attain current densities of 2 and 10 mA cm−2, respectively.
A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low‐temperature phosphidation of a Co3O4/CNT precursor. As a novel non‐noble‐metal hydrogen‐evolution electrocatalyst that operates in acidic media, this nanohybrid exhibits an onset overpotential of only 40 mV and maintained its catalytic activity for at least 18 hours. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201404161 |