Loading…
Optimal maintenance policy for multi-component systems under Markovian environment changes
•Maintenance model for multi-component systems under environmental influence.•Opportunity maintenance consideration in multi-component systems.•Mathematical proof of existence and optimality of a (nr,Nr) type policy.•Iterative approximation algorithm for maintenance policy in multi-component systems...
Saved in:
Published in: | Expert systems with applications 2013-12, Vol.40 (18), p.7391-7399 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573 |
container_end_page | 7399 |
container_issue | 18 |
container_start_page | 7391 |
container_title | Expert systems with applications |
container_volume | 40 |
creator | Zhang, Zhuoqi Wu, Su Li, Binfeng Lee, Seungchul |
description | •Maintenance model for multi-component systems under environmental influence.•Opportunity maintenance consideration in multi-component systems.•Mathematical proof of existence and optimality of a (nr,Nr) type policy.•Iterative approximation algorithm for maintenance policy in multi-component systems.
In this paper, we study multi-component systems, which environmental conditions and opportunistic maintenance (OM) involve. Environmental conditions will exert an influence on deterioration processes of the components in the system. For each component, the worse the environmental conditions are, the faster its deterioration speed is. We want to determine when to preventively maintain each component under such environmental influence. Our purpose is to minimize its long-run average maintenance cost. We decompose such a multi-component system into mutually influential single-component systems, and formulate the maintenance problem of each component as a Markov decision process (MDP). Under some reasonable assumptions, we prove the existence of the optimal (nr,Nr) type policy for each component. A policy iteration method is used to calculate its optimal maintenance policy. Based on the method, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that environmental conditions and OM pose significant effects on a maintenance policy. |
doi_str_mv | 10.1016/j.eswa.2013.07.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701118253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095741741300465X</els_id><sourcerecordid>1701017228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0UJDaBP0A1DRLNDL5-zkg0UUQAKShNKhrL2HfAy4w92LOL9t_Hq40ow1a3Off1HULeAu2Agvqw7bD8tR2jwDuqO0r5C7KBXvNW6YFfkA0dpG4FaPGKXJaypRQ0pXpDvt8va5jt1Mw2xBWjjQ6bJU3BHZox5WbeTWtoXZqXFDGuTTmUFefS7KLH3Hyz-XfaBxsbjPuQU5yPjPtl408sr8nL0U4F3zzVK_Jw--nh5kt7d__56831XevEMKwtGzVwMXihBs9GK0eq7Q-rtPW9ZNIzZa0fGGg3OsoZ9VJi7wGcV6iE1PyKvD-NXXL6s8OymjkUh9NkI6ZdMfVRAOiZ5GehNRjG-v-jsh6tQcAZqBC9Zor1rKLshLqcSsk4miXX9PPBADVHkWZrjiLNUaSh2lSRtend03xbnJ3GXB2F8q-TaS0V70XlPp44rGHvA2ZTXMDq04eMbjU-hefWPAJPHrPd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448726282</pqid></control><display><type>article</type><title>Optimal maintenance policy for multi-component systems under Markovian environment changes</title><source>ScienceDirect Journals</source><creator>Zhang, Zhuoqi ; Wu, Su ; Li, Binfeng ; Lee, Seungchul</creator><creatorcontrib>Zhang, Zhuoqi ; Wu, Su ; Li, Binfeng ; Lee, Seungchul</creatorcontrib><description>•Maintenance model for multi-component systems under environmental influence.•Opportunity maintenance consideration in multi-component systems.•Mathematical proof of existence and optimality of a (nr,Nr) type policy.•Iterative approximation algorithm for maintenance policy in multi-component systems.
In this paper, we study multi-component systems, which environmental conditions and opportunistic maintenance (OM) involve. Environmental conditions will exert an influence on deterioration processes of the components in the system. For each component, the worse the environmental conditions are, the faster its deterioration speed is. We want to determine when to preventively maintain each component under such environmental influence. Our purpose is to minimize its long-run average maintenance cost. We decompose such a multi-component system into mutually influential single-component systems, and formulate the maintenance problem of each component as a Markov decision process (MDP). Under some reasonable assumptions, we prove the existence of the optimal (nr,Nr) type policy for each component. A policy iteration method is used to calculate its optimal maintenance policy. Based on the method, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that environmental conditions and OM pose significant effects on a maintenance policy.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2013.07.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Applied sciences ; Decision theory. Utility theory ; Deterioration ; Environmental influence ; Exact sciences and technology ; Industrial metrology. Testing ; Inventory control, production control. Distribution ; Iterative methods ; Maintenance ; Maintenance policy ; Markov decision processes ; Markov processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Mechanical engineering. Machine design ; Multi-component system ; Operational research and scientific management ; Operational research. Management science ; Opportunistic maintenance ; Optimization ; Policies ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use</subject><ispartof>Expert systems with applications, 2013-12, Vol.40 (18), p.7391-7399</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573</citedby><cites>FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27756384$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhuoqi</creatorcontrib><creatorcontrib>Wu, Su</creatorcontrib><creatorcontrib>Li, Binfeng</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><title>Optimal maintenance policy for multi-component systems under Markovian environment changes</title><title>Expert systems with applications</title><description>•Maintenance model for multi-component systems under environmental influence.•Opportunity maintenance consideration in multi-component systems.•Mathematical proof of existence and optimality of a (nr,Nr) type policy.•Iterative approximation algorithm for maintenance policy in multi-component systems.
In this paper, we study multi-component systems, which environmental conditions and opportunistic maintenance (OM) involve. Environmental conditions will exert an influence on deterioration processes of the components in the system. For each component, the worse the environmental conditions are, the faster its deterioration speed is. We want to determine when to preventively maintain each component under such environmental influence. Our purpose is to minimize its long-run average maintenance cost. We decompose such a multi-component system into mutually influential single-component systems, and formulate the maintenance problem of each component as a Markov decision process (MDP). Under some reasonable assumptions, we prove the existence of the optimal (nr,Nr) type policy for each component. A policy iteration method is used to calculate its optimal maintenance policy. Based on the method, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that environmental conditions and OM pose significant effects on a maintenance policy.</description><subject>Applied sciences</subject><subject>Decision theory. Utility theory</subject><subject>Deterioration</subject><subject>Environmental influence</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Inventory control, production control. Distribution</subject><subject>Iterative methods</subject><subject>Maintenance</subject><subject>Maintenance policy</subject><subject>Markov decision processes</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanical engineering. Machine design</subject><subject>Multi-component system</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Opportunistic maintenance</subject><subject>Optimization</subject><subject>Policies</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkTtvFDEURi0UJDaBP0A1DRLNDL5-zkg0UUQAKShNKhrL2HfAy4w92LOL9t_Hq40ow1a3Off1HULeAu2Agvqw7bD8tR2jwDuqO0r5C7KBXvNW6YFfkA0dpG4FaPGKXJaypRQ0pXpDvt8va5jt1Mw2xBWjjQ6bJU3BHZox5WbeTWtoXZqXFDGuTTmUFefS7KLH3Hyz-XfaBxsbjPuQU5yPjPtl408sr8nL0U4F3zzVK_Jw--nh5kt7d__56831XevEMKwtGzVwMXihBs9GK0eq7Q-rtPW9ZNIzZa0fGGg3OsoZ9VJi7wGcV6iE1PyKvD-NXXL6s8OymjkUh9NkI6ZdMfVRAOiZ5GehNRjG-v-jsh6tQcAZqBC9Zor1rKLshLqcSsk4miXX9PPBADVHkWZrjiLNUaSh2lSRtend03xbnJ3GXB2F8q-TaS0V70XlPp44rGHvA2ZTXMDq04eMbjU-hefWPAJPHrPd</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Zhang, Zhuoqi</creator><creator>Wu, Su</creator><creator>Li, Binfeng</creator><creator>Lee, Seungchul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131215</creationdate><title>Optimal maintenance policy for multi-component systems under Markovian environment changes</title><author>Zhang, Zhuoqi ; Wu, Su ; Li, Binfeng ; Lee, Seungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Decision theory. Utility theory</topic><topic>Deterioration</topic><topic>Environmental influence</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Inventory control, production control. Distribution</topic><topic>Iterative methods</topic><topic>Maintenance</topic><topic>Maintenance policy</topic><topic>Markov decision processes</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanical engineering. Machine design</topic><topic>Multi-component system</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Opportunistic maintenance</topic><topic>Optimization</topic><topic>Policies</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhuoqi</creatorcontrib><creatorcontrib>Wu, Su</creatorcontrib><creatorcontrib>Li, Binfeng</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhuoqi</au><au>Wu, Su</au><au>Li, Binfeng</au><au>Lee, Seungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal maintenance policy for multi-component systems under Markovian environment changes</atitle><jtitle>Expert systems with applications</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>40</volume><issue>18</issue><spage>7391</spage><epage>7399</epage><pages>7391-7399</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Maintenance model for multi-component systems under environmental influence.•Opportunity maintenance consideration in multi-component systems.•Mathematical proof of existence and optimality of a (nr,Nr) type policy.•Iterative approximation algorithm for maintenance policy in multi-component systems.
In this paper, we study multi-component systems, which environmental conditions and opportunistic maintenance (OM) involve. Environmental conditions will exert an influence on deterioration processes of the components in the system. For each component, the worse the environmental conditions are, the faster its deterioration speed is. We want to determine when to preventively maintain each component under such environmental influence. Our purpose is to minimize its long-run average maintenance cost. We decompose such a multi-component system into mutually influential single-component systems, and formulate the maintenance problem of each component as a Markov decision process (MDP). Under some reasonable assumptions, we prove the existence of the optimal (nr,Nr) type policy for each component. A policy iteration method is used to calculate its optimal maintenance policy. Based on the method, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that environmental conditions and OM pose significant effects on a maintenance policy.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2013.07.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2013-12, Vol.40 (18), p.7391-7399 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701118253 |
source | ScienceDirect Journals |
subjects | Applied sciences Decision theory. Utility theory Deterioration Environmental influence Exact sciences and technology Industrial metrology. Testing Inventory control, production control. Distribution Iterative methods Maintenance Maintenance policy Markov decision processes Markov processes Mathematical analysis Mathematical models Mathematics Mechanical engineering. Machine design Multi-component system Operational research and scientific management Operational research. Management science Opportunistic maintenance Optimization Policies Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use |
title | Optimal maintenance policy for multi-component systems under Markovian environment changes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20maintenance%20policy%20for%20multi-component%20systems%20under%20Markovian%20environment%20changes&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Zhang,%20Zhuoqi&rft.date=2013-12-15&rft.volume=40&rft.issue=18&rft.spage=7391&rft.epage=7399&rft.pages=7391-7399&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2013.07.003&rft_dat=%3Cproquest_cross%3E1701017228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-2f71349d469d2fa5f07aba67ad8525d26aad9217cfc0320d55e8d11cd6e64573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1448726282&rft_id=info:pmid/&rfr_iscdi=true |