Loading…
Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion
Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challeng...
Saved in:
Published in: | Angewandte Chemie International Edition 2014-01, Vol.53 (1), p.102-121 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3 |
container_end_page | 121 |
container_issue | 1 |
container_start_page | 102 |
container_title | Angewandte Chemie International Edition |
container_volume | 53 |
creator | Katsounaros, Ioannis Cherevko, Serhiy Zeradjanin, Aleksandar R. Mayrhofer, Karl J. J. |
description | Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.
The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction. |
doi_str_mv | 10.1002/anie.201306588 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701119516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701119516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMojo5uXUrBjZuOeTbJUobxhTjgE9yEtE3Hjp1Ek1btvzcyOogbV_fC_c7hcC4AewiOEIT4SNvajDBEBGZMiDWwhRhGKeGcrMedEpJywdAAbIcwj7wQMNsEAxwPkjC5BS6mH_3M2GTSmKL1rngyizq0vk90SHQydt4aH1pnTVI5n9x0odW11Xljkkm8zPqI2LeI1M7ugI1KN8Hsfs8huDuZ3I7P0svp6fn4-DItGOUilRKWGRec4BJLorGsWE6QgFzTilBRoryUmjIpRVlKjllFhWYSFjgviJA0J0NwuPR98e61M6FVMXJhmkZb47qgEIcIIclQFtGDP-jcdd7GdApRDikmMmYYgtGSKrwLwZtKvfh6oX2vEFRfLauvltWq5SjY_7bt8oUpV_hPrRGQS-C9bkz_j506vjqf_DZPl9r4B_Ox0mr_rDJOOFMPV6fqenx2-3iPoZLkE3SslsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470423929</pqid></control><display><type>article</type><title>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Katsounaros, Ioannis ; Cherevko, Serhiy ; Zeradjanin, Aleksandar R. ; Mayrhofer, Karl J. J.</creator><creatorcontrib>Katsounaros, Ioannis ; Cherevko, Serhiy ; Zeradjanin, Aleksandar R. ; Mayrhofer, Karl J. J.</creatorcontrib><description>Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.
The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201306588</identifier><identifier>PMID: 24339359</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Catalysts ; Conversion ; Electrochemistry ; electrolysis ; Electrolytic cells ; fuel cells ; Materials selection ; Nanostructure ; Nanostructured materials ; nanostructures ; Oxygen ; oxygen evolution ; oxygen reduction ; Renewable energy ; Stability</subject><ispartof>Angewandte Chemie International Edition, 2014-01, Vol.53 (1), p.102-121</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</citedby><cites>FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24339359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katsounaros, Ioannis</creatorcontrib><creatorcontrib>Cherevko, Serhiy</creatorcontrib><creatorcontrib>Zeradjanin, Aleksandar R.</creatorcontrib><creatorcontrib>Mayrhofer, Karl J. J.</creatorcontrib><title>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.
The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.</description><subject>Catalysts</subject><subject>Conversion</subject><subject>Electrochemistry</subject><subject>electrolysis</subject><subject>Electrolytic cells</subject><subject>fuel cells</subject><subject>Materials selection</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>nanostructures</subject><subject>Oxygen</subject><subject>oxygen evolution</subject><subject>oxygen reduction</subject><subject>Renewable energy</subject><subject>Stability</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLxDAUhYMojo5uXUrBjZuOeTbJUobxhTjgE9yEtE3Hjp1Ek1btvzcyOogbV_fC_c7hcC4AewiOEIT4SNvajDBEBGZMiDWwhRhGKeGcrMedEpJywdAAbIcwj7wQMNsEAxwPkjC5BS6mH_3M2GTSmKL1rngyizq0vk90SHQydt4aH1pnTVI5n9x0odW11Xljkkm8zPqI2LeI1M7ugI1KN8Hsfs8huDuZ3I7P0svp6fn4-DItGOUilRKWGRec4BJLorGsWE6QgFzTilBRoryUmjIpRVlKjllFhWYSFjgviJA0J0NwuPR98e61M6FVMXJhmkZb47qgEIcIIclQFtGDP-jcdd7GdApRDikmMmYYgtGSKrwLwZtKvfh6oX2vEFRfLauvltWq5SjY_7bt8oUpV_hPrRGQS-C9bkz_j506vjqf_DZPl9r4B_Ox0mr_rDJOOFMPV6fqenx2-3iPoZLkE3SslsY</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Katsounaros, Ioannis</creator><creator>Cherevko, Serhiy</creator><creator>Zeradjanin, Aleksandar R.</creator><creator>Mayrhofer, Karl J. J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140103</creationdate><title>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</title><author>Katsounaros, Ioannis ; Cherevko, Serhiy ; Zeradjanin, Aleksandar R. ; Mayrhofer, Karl J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysts</topic><topic>Conversion</topic><topic>Electrochemistry</topic><topic>electrolysis</topic><topic>Electrolytic cells</topic><topic>fuel cells</topic><topic>Materials selection</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>nanostructures</topic><topic>Oxygen</topic><topic>oxygen evolution</topic><topic>oxygen reduction</topic><topic>Renewable energy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsounaros, Ioannis</creatorcontrib><creatorcontrib>Cherevko, Serhiy</creatorcontrib><creatorcontrib>Zeradjanin, Aleksandar R.</creatorcontrib><creatorcontrib>Mayrhofer, Karl J. J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsounaros, Ioannis</au><au>Cherevko, Serhiy</au><au>Zeradjanin, Aleksandar R.</au><au>Mayrhofer, Karl J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2014-01-03</date><risdate>2014</risdate><volume>53</volume><issue>1</issue><spage>102</spage><epage>121</epage><pages>102-121</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.
The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24339359</pmid><doi>10.1002/anie.201306588</doi><tpages>20</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2014-01, Vol.53 (1), p.102-121 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701119516 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Catalysts Conversion Electrochemistry electrolysis Electrolytic cells fuel cells Materials selection Nanostructure Nanostructured materials nanostructures Oxygen oxygen evolution oxygen reduction Renewable energy Stability |
title | Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Electrochemistry%20as%20a%20Cornerstone%20for%20Sustainable%20Energy%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Katsounaros,%20Ioannis&rft.date=2014-01-03&rft.volume=53&rft.issue=1&rft.spage=102&rft.epage=121&rft.pages=102-121&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201306588&rft_dat=%3Cproquest_cross%3E1701119516%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1470423929&rft_id=info:pmid/24339359&rfr_iscdi=true |