Loading…

Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion

Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challeng...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2014-01, Vol.53 (1), p.102-121
Main Authors: Katsounaros, Ioannis, Cherevko, Serhiy, Zeradjanin, Aleksandar R., Mayrhofer, Karl J. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3
cites cdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3
container_end_page 121
container_issue 1
container_start_page 102
container_title Angewandte Chemie International Edition
container_volume 53
creator Katsounaros, Ioannis
Cherevko, Serhiy
Zeradjanin, Aleksandar R.
Mayrhofer, Karl J. J.
description Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition. The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.
doi_str_mv 10.1002/anie.201306588
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701119516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701119516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMojo5uXUrBjZuOeTbJUobxhTjgE9yEtE3Hjp1Ek1btvzcyOogbV_fC_c7hcC4AewiOEIT4SNvajDBEBGZMiDWwhRhGKeGcrMedEpJywdAAbIcwj7wQMNsEAxwPkjC5BS6mH_3M2GTSmKL1rngyizq0vk90SHQydt4aH1pnTVI5n9x0odW11Xljkkm8zPqI2LeI1M7ugI1KN8Hsfs8huDuZ3I7P0svp6fn4-DItGOUilRKWGRec4BJLorGsWE6QgFzTilBRoryUmjIpRVlKjllFhWYSFjgviJA0J0NwuPR98e61M6FVMXJhmkZb47qgEIcIIclQFtGDP-jcdd7GdApRDikmMmYYgtGSKrwLwZtKvfh6oX2vEFRfLauvltWq5SjY_7bt8oUpV_hPrRGQS-C9bkz_j506vjqf_DZPl9r4B_Ox0mr_rDJOOFMPV6fqenx2-3iPoZLkE3SslsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470423929</pqid></control><display><type>article</type><title>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Katsounaros, Ioannis ; Cherevko, Serhiy ; Zeradjanin, Aleksandar R. ; Mayrhofer, Karl J. J.</creator><creatorcontrib>Katsounaros, Ioannis ; Cherevko, Serhiy ; Zeradjanin, Aleksandar R. ; Mayrhofer, Karl J. J.</creatorcontrib><description>Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition. The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201306588</identifier><identifier>PMID: 24339359</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Catalysts ; Conversion ; Electrochemistry ; electrolysis ; Electrolytic cells ; fuel cells ; Materials selection ; Nanostructure ; Nanostructured materials ; nanostructures ; Oxygen ; oxygen evolution ; oxygen reduction ; Renewable energy ; Stability</subject><ispartof>Angewandte Chemie International Edition, 2014-01, Vol.53 (1), p.102-121</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</citedby><cites>FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24339359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katsounaros, Ioannis</creatorcontrib><creatorcontrib>Cherevko, Serhiy</creatorcontrib><creatorcontrib>Zeradjanin, Aleksandar R.</creatorcontrib><creatorcontrib>Mayrhofer, Karl J. J.</creatorcontrib><title>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition. The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.</description><subject>Catalysts</subject><subject>Conversion</subject><subject>Electrochemistry</subject><subject>electrolysis</subject><subject>Electrolytic cells</subject><subject>fuel cells</subject><subject>Materials selection</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>nanostructures</subject><subject>Oxygen</subject><subject>oxygen evolution</subject><subject>oxygen reduction</subject><subject>Renewable energy</subject><subject>Stability</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLxDAUhYMojo5uXUrBjZuOeTbJUobxhTjgE9yEtE3Hjp1Ek1btvzcyOogbV_fC_c7hcC4AewiOEIT4SNvajDBEBGZMiDWwhRhGKeGcrMedEpJywdAAbIcwj7wQMNsEAxwPkjC5BS6mH_3M2GTSmKL1rngyizq0vk90SHQydt4aH1pnTVI5n9x0odW11Xljkkm8zPqI2LeI1M7ugI1KN8Hsfs8huDuZ3I7P0svp6fn4-DItGOUilRKWGRec4BJLorGsWE6QgFzTilBRoryUmjIpRVlKjllFhWYSFjgviJA0J0NwuPR98e61M6FVMXJhmkZb47qgEIcIIclQFtGDP-jcdd7GdApRDikmMmYYgtGSKrwLwZtKvfh6oX2vEFRfLauvltWq5SjY_7bt8oUpV_hPrRGQS-C9bkz_j506vjqf_DZPl9r4B_Ox0mr_rDJOOFMPV6fqenx2-3iPoZLkE3SslsY</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Katsounaros, Ioannis</creator><creator>Cherevko, Serhiy</creator><creator>Zeradjanin, Aleksandar R.</creator><creator>Mayrhofer, Karl J. J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140103</creationdate><title>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</title><author>Katsounaros, Ioannis ; Cherevko, Serhiy ; Zeradjanin, Aleksandar R. ; Mayrhofer, Karl J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysts</topic><topic>Conversion</topic><topic>Electrochemistry</topic><topic>electrolysis</topic><topic>Electrolytic cells</topic><topic>fuel cells</topic><topic>Materials selection</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>nanostructures</topic><topic>Oxygen</topic><topic>oxygen evolution</topic><topic>oxygen reduction</topic><topic>Renewable energy</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsounaros, Ioannis</creatorcontrib><creatorcontrib>Cherevko, Serhiy</creatorcontrib><creatorcontrib>Zeradjanin, Aleksandar R.</creatorcontrib><creatorcontrib>Mayrhofer, Karl J. J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsounaros, Ioannis</au><au>Cherevko, Serhiy</au><au>Zeradjanin, Aleksandar R.</au><au>Mayrhofer, Karl J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2014-01-03</date><risdate>2014</risdate><volume>53</volume><issue>1</issue><spage>102</spage><epage>121</epage><pages>102-121</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition. The deployment of sustainable energy technologies is limited by severe challenges in the design of nanostructured electrocatalysts. Efficient catalysts must meet the criteria of high activity, long‐term stability, and abundance of the materials used. Integrated solutions will be provided only by multidisciplinary approaches that include fundamental electrochemistry, materials science, and chemical engineering. ORR/OER=O2 reduction/evolution reaction.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24339359</pmid><doi>10.1002/anie.201306588</doi><tpages>20</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2014-01, Vol.53 (1), p.102-121
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1701119516
source Wiley-Blackwell Read & Publish Collection
subjects Catalysts
Conversion
Electrochemistry
electrolysis
Electrolytic cells
fuel cells
Materials selection
Nanostructure
Nanostructured materials
nanostructures
Oxygen
oxygen evolution
oxygen reduction
Renewable energy
Stability
title Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Electrochemistry%20as%20a%20Cornerstone%20for%20Sustainable%20Energy%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Katsounaros,%20Ioannis&rft.date=2014-01-03&rft.volume=53&rft.issue=1&rft.spage=102&rft.epage=121&rft.pages=102-121&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201306588&rft_dat=%3Cproquest_cross%3E1701119516%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5478-990d678732d293a29f5b31807a4f348d1bd9a45998dd9725f48a590c2bc3894b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1470423929&rft_id=info:pmid/24339359&rfr_iscdi=true