Loading…

Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil

An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by...

Full description

Saved in:
Bibliographic Details
Published in:Géotechnique 2013-12, Vol.63 (16), p.1447-1450
Main Authors: MCMAHON, B. T, HAIGH, S. K, BOLTON, M. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473
cites cdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473
container_end_page 1450
container_issue 16
container_start_page 1447
container_title Géotechnique
container_volume 63
creator MCMAHON, B. T
HAIGH, S. K
BOLTON, M. D
description An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.
doi_str_mv 10.1680/geot.13.T.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701122871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701122871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMoOK4evQdE8NJjKulO0kdZXBUW9jKeQyapdrKkkzbJIPvvzbqDBy-eHlR99aiqR8hbYHuQmn38gbntQewPe8b4M7IDNcGg5CSfkx1jIAc9sekleVXrfQfYrNWO-LuthdVG6kPdonW4Ymp0RXeyKdS10iMmtO1E68nGmH_RJZ-Tty3kVGlONIbeLgNGW1twdMOyoGvxgW6XSs0hviYvFhsrvrnoFfl-8_lw_XW4vfvy7frT7eCEhDZwlFJo5pkGcUSBEz8qiUJ30Wr04zLy2ap55H72XLPRzd5x4P7orYV5VOKKfHjy3Ur-ecbazBqqwxhtwnyuBhQD4Fwr-D86gRgn1Qc6-u4f9D6fS-qHGBil5EpMfwyHJ8qVXGvBxWylP7Y8GGDmMR7zGI8BYQ6mf7_z7y-utjobl2KTC_XvEFczY7Iv8Rs74JC_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466273571</pqid></control><display><type>article</type><title>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</title><source>ICE Virtual Library (Institution of Civil Engineers)</source><creator>MCMAHON, B. T ; HAIGH, S. K ; BOLTON, M. D</creator><creatorcontrib>MCMAHON, B. T ; HAIGH, S. K ; BOLTON, M. D</creatorcontrib><description>An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.</description><identifier>ISSN: 0016-8505</identifier><identifier>EISSN: 1751-7656</identifier><identifier>DOI: 10.1680/geot.13.T.002</identifier><identifier>CODEN: GTNQA8</identifier><language>eng</language><publisher>London: Telford</publisher><subject>Displacement ; Earth sciences ; Earth, ocean, space ; Energy methods ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Finite element method ; Mathematical analysis ; Optimization ; Rigidity ; Settlements ; Soil (material)</subject><ispartof>Géotechnique, 2013-12, Vol.63 (16), p.1447-1450</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright ICE Publishing Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</citedby><cites>FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27900651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MCMAHON, B. T</creatorcontrib><creatorcontrib>HAIGH, S. K</creatorcontrib><creatorcontrib>BOLTON, M. D</creatorcontrib><title>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</title><title>Géotechnique</title><description>An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.</description><subject>Displacement</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy methods</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Rigidity</subject><subject>Settlements</subject><subject>Soil (material)</subject><issn>0016-8505</issn><issn>1751-7656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhYMoOK4evQdE8NJjKulO0kdZXBUW9jKeQyapdrKkkzbJIPvvzbqDBy-eHlR99aiqR8hbYHuQmn38gbntQewPe8b4M7IDNcGg5CSfkx1jIAc9sekleVXrfQfYrNWO-LuthdVG6kPdonW4Ymp0RXeyKdS10iMmtO1E68nGmH_RJZ-Tty3kVGlONIbeLgNGW1twdMOyoGvxgW6XSs0hviYvFhsrvrnoFfl-8_lw_XW4vfvy7frT7eCEhDZwlFJo5pkGcUSBEz8qiUJ30Wr04zLy2ap55H72XLPRzd5x4P7orYV5VOKKfHjy3Ur-ecbazBqqwxhtwnyuBhQD4Fwr-D86gRgn1Qc6-u4f9D6fS-qHGBil5EpMfwyHJ8qVXGvBxWylP7Y8GGDmMR7zGI8BYQ6mf7_z7y-utjobl2KTC_XvEFczY7Iv8Rs74JC_</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>MCMAHON, B. T</creator><creator>HAIGH, S. K</creator><creator>BOLTON, M. D</creator><general>Telford</general><general>ICE Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7SR</scope><scope>7SU</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</title><author>MCMAHON, B. T ; HAIGH, S. K ; BOLTON, M. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Displacement</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy methods</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Rigidity</topic><topic>Settlements</topic><topic>Soil (material)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MCMAHON, B. T</creatorcontrib><creatorcontrib>HAIGH, S. K</creatorcontrib><creatorcontrib>BOLTON, M. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Research Database</collection><jtitle>Géotechnique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MCMAHON, B. T</au><au>HAIGH, S. K</au><au>BOLTON, M. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</atitle><jtitle>Géotechnique</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>63</volume><issue>16</issue><spage>1447</spage><epage>1450</epage><pages>1447-1450</pages><issn>0016-8505</issn><eissn>1751-7656</eissn><coden>GTNQA8</coden><abstract>An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.</abstract><cop>London</cop><pub>Telford</pub><doi>10.1680/geot.13.T.002</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-8505
ispartof Géotechnique, 2013-12, Vol.63 (16), p.1447-1450
issn 0016-8505
1751-7656
language eng
recordid cdi_proquest_miscellaneous_1701122871
source ICE Virtual Library (Institution of Civil Engineers)
subjects Displacement
Earth sciences
Earth, ocean, space
Energy methods
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Finite element method
Mathematical analysis
Optimization
Rigidity
Settlements
Soil (material)
title Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20displacement%20mechanisms%20beneath%20shallow%20foundations%20on%20linear-elastic%20perfectly%20plastic%20soil&rft.jtitle=G%C3%A9otechnique&rft.au=MCMAHON,%20B.%20T&rft.date=2013-12-01&rft.volume=63&rft.issue=16&rft.spage=1447&rft.epage=1450&rft.pages=1447-1450&rft.issn=0016-8505&rft.eissn=1751-7656&rft.coden=GTNQA8&rft_id=info:doi/10.1680/geot.13.T.002&rft_dat=%3Cproquest_cross%3E1701122871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1466273571&rft_id=info:pmid/&rfr_iscdi=true