Loading…
Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil
An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by...
Saved in:
Published in: | Géotechnique 2013-12, Vol.63 (16), p.1447-1450 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473 |
container_end_page | 1450 |
container_issue | 16 |
container_start_page | 1447 |
container_title | Géotechnique |
container_volume | 63 |
creator | MCMAHON, B. T HAIGH, S. K BOLTON, M. D |
description | An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate. |
doi_str_mv | 10.1680/geot.13.T.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701122871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701122871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMoOK4evQdE8NJjKulO0kdZXBUW9jKeQyapdrKkkzbJIPvvzbqDBy-eHlR99aiqR8hbYHuQmn38gbntQewPe8b4M7IDNcGg5CSfkx1jIAc9sekleVXrfQfYrNWO-LuthdVG6kPdonW4Ymp0RXeyKdS10iMmtO1E68nGmH_RJZ-Tty3kVGlONIbeLgNGW1twdMOyoGvxgW6XSs0hviYvFhsrvrnoFfl-8_lw_XW4vfvy7frT7eCEhDZwlFJo5pkGcUSBEz8qiUJ30Wr04zLy2ap55H72XLPRzd5x4P7orYV5VOKKfHjy3Ur-ecbazBqqwxhtwnyuBhQD4Fwr-D86gRgn1Qc6-u4f9D6fS-qHGBil5EpMfwyHJ8qVXGvBxWylP7Y8GGDmMR7zGI8BYQ6mf7_z7y-utjobl2KTC_XvEFczY7Iv8Rs74JC_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466273571</pqid></control><display><type>article</type><title>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</title><source>ICE Virtual Library (Institution of Civil Engineers)</source><creator>MCMAHON, B. T ; HAIGH, S. K ; BOLTON, M. D</creator><creatorcontrib>MCMAHON, B. T ; HAIGH, S. K ; BOLTON, M. D</creatorcontrib><description>An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.</description><identifier>ISSN: 0016-8505</identifier><identifier>EISSN: 1751-7656</identifier><identifier>DOI: 10.1680/geot.13.T.002</identifier><identifier>CODEN: GTNQA8</identifier><language>eng</language><publisher>London: Telford</publisher><subject>Displacement ; Earth sciences ; Earth, ocean, space ; Energy methods ; Engineering and environment geology. Geothermics ; Engineering geology ; Exact sciences and technology ; Finite element method ; Mathematical analysis ; Optimization ; Rigidity ; Settlements ; Soil (material)</subject><ispartof>Géotechnique, 2013-12, Vol.63 (16), p.1447-1450</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright ICE Publishing Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</citedby><cites>FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27900651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MCMAHON, B. T</creatorcontrib><creatorcontrib>HAIGH, S. K</creatorcontrib><creatorcontrib>BOLTON, M. D</creatorcontrib><title>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</title><title>Géotechnique</title><description>An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.</description><subject>Displacement</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy methods</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Rigidity</subject><subject>Settlements</subject><subject>Soil (material)</subject><issn>0016-8505</issn><issn>1751-7656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhYMoOK4evQdE8NJjKulO0kdZXBUW9jKeQyapdrKkkzbJIPvvzbqDBy-eHlR99aiqR8hbYHuQmn38gbntQewPe8b4M7IDNcGg5CSfkx1jIAc9sekleVXrfQfYrNWO-LuthdVG6kPdonW4Ymp0RXeyKdS10iMmtO1E68nGmH_RJZ-Tty3kVGlONIbeLgNGW1twdMOyoGvxgW6XSs0hviYvFhsrvrnoFfl-8_lw_XW4vfvy7frT7eCEhDZwlFJo5pkGcUSBEz8qiUJ30Wr04zLy2ap55H72XLPRzd5x4P7orYV5VOKKfHjy3Ur-ecbazBqqwxhtwnyuBhQD4Fwr-D86gRgn1Qc6-u4f9D6fS-qHGBil5EpMfwyHJ8qVXGvBxWylP7Y8GGDmMR7zGI8BYQ6mf7_z7y-utjobl2KTC_XvEFczY7Iv8Rs74JC_</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>MCMAHON, B. T</creator><creator>HAIGH, S. K</creator><creator>BOLTON, M. D</creator><general>Telford</general><general>ICE Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7SR</scope><scope>7SU</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</title><author>MCMAHON, B. T ; HAIGH, S. K ; BOLTON, M. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Displacement</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy methods</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Rigidity</topic><topic>Settlements</topic><topic>Soil (material)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MCMAHON, B. T</creatorcontrib><creatorcontrib>HAIGH, S. K</creatorcontrib><creatorcontrib>BOLTON, M. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Research Database</collection><jtitle>Géotechnique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MCMAHON, B. T</au><au>HAIGH, S. K</au><au>BOLTON, M. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil</atitle><jtitle>Géotechnique</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>63</volume><issue>16</issue><spage>1447</spage><epage>1450</epage><pages>1447-1450</pages><issn>0016-8505</issn><eissn>1751-7656</eissn><coden>GTNQA8</coden><abstract>An energy method for a linear-elastic perfectly plastic method utilising the von Mises yield criterion with associated flow developed in 2013 by McMahon and co-workers is used, to compare the ellipsoidal cavity-expansion mechanism, from the same work, and the displacement fields of other research by Levin, in 1995, and Osman and Bolton, in 2005, which utilise the Hill and Prandtl mechanisms, respectively. The energy method was also used with a mechanism produced by performing a linear-elastic finite-element analysis in Abaqus. At small values of settlement and soil rigidity the elastic mechanism provides the lowest upper-bound solution, and matches well with finite-element analysis results published in the literature. At typical footing working loads and settlements the cavityexpansion mechanism produces a more optimal solution than the displacement fields within the Hill and Prandtl mechanisms, and also matches well with the published finite-element analysis results in this range. Beyond these loads, at greater footing settlements, or soil rigidity, the Prandtl mechanism is shown to be the most appropriate.</abstract><cop>London</cop><pub>Telford</pub><doi>10.1680/geot.13.T.002</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8505 |
ispartof | Géotechnique, 2013-12, Vol.63 (16), p.1447-1450 |
issn | 0016-8505 1751-7656 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701122871 |
source | ICE Virtual Library (Institution of Civil Engineers) |
subjects | Displacement Earth sciences Earth, ocean, space Energy methods Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Finite element method Mathematical analysis Optimization Rigidity Settlements Soil (material) |
title | Optimal displacement mechanisms beneath shallow foundations on linear-elastic perfectly plastic soil |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20displacement%20mechanisms%20beneath%20shallow%20foundations%20on%20linear-elastic%20perfectly%20plastic%20soil&rft.jtitle=G%C3%A9otechnique&rft.au=MCMAHON,%20B.%20T&rft.date=2013-12-01&rft.volume=63&rft.issue=16&rft.spage=1447&rft.epage=1450&rft.pages=1447-1450&rft.issn=0016-8505&rft.eissn=1751-7656&rft.coden=GTNQA8&rft_id=info:doi/10.1680/geot.13.T.002&rft_dat=%3Cproquest_cross%3E1701122871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2e66380d0813be3e52b76e382b7874d4f429a7942d9d2804c9dc212dbdaa19473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1466273571&rft_id=info:pmid/&rfr_iscdi=true |