Loading…
Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin
The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of o...
Saved in:
Published in: | Journal of hydrometeorology 2015-06, Vol.16 (3), p.1109-1134 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-d20218d125528fbe28f45df43b37d5bdc6a23cabc576f146ab4779df6b8ae8fd3 |
---|---|
cites | |
container_end_page | 1134 |
container_issue | 3 |
container_start_page | 1109 |
container_title | Journal of hydrometeorology |
container_volume | 16 |
creator | Lievens, H. Al Bitar, A. Verhoest, N. E. C. Cabot, F. De Lannoy, G. J. M. Drusch, M. Dumedah, G. Franssen, H.-J. Hendricks Kerr, Y. Tomer, S. K. Martens, B. Merlin, O. Pan, M. van den Berg, M. J. Vereecken, H. Walker, J. P. Wood, E. F. Pauwels, V. R. N. |
description | The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation. |
doi_str_mv | 10.1175/JHM-D-14-0052.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701475746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24915458</jstor_id><sourcerecordid>24915458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d20218d125528fbe28f45df43b37d5bdc6a23cabc576f146ab4779df6b8ae8fd3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhhdR8PPsSQh48bKaySab7dFaP2kp2AreQnaTaEp3sya7FT36y02teBCSTGZ43mGYN0mOAZ8DcHbxcDdJRynQFGNGzmEr2QNGWMoZhe2_P3veTfZDWGCM6QCKveRr2na2tp-ys65BziCJHqWyMV1pNPeyCUZ7dOP8u_QKTVvtZec8MvHObN0vI9i8oNlkOkNDb19eu0aHgOa6_iF7rwNyq9ihe9XoqY1FNLEhrE_bWjSUwTaHyY6Ry6CPfuNB8nRzPb-6S8fT2_ury3FaZYOsSxXBBAoFhDFSmFLHhzJlaFZmXLFSVbkkWSXLivHcAM1lSTkfKJOXhdSFUdlBcrbp23r31uvQidqGSi-XstGuDwI4BsoZp3lET_-hC9f7Jk4nYEDyghSY00hdbKjKuxC8NqL1tpb-QwAWa09E9ESMBFCx9kRAVJxsFIsQt_iHk-gFo6zIvgE3r4sc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926828074</pqid></control><display><type>article</type><title>Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lievens, H. ; Al Bitar, A. ; Verhoest, N. E. C. ; Cabot, F. ; De Lannoy, G. J. M. ; Drusch, M. ; Dumedah, G. ; Franssen, H.-J. Hendricks ; Kerr, Y. ; Tomer, S. K. ; Martens, B. ; Merlin, O. ; Pan, M. ; van den Berg, M. J. ; Vereecken, H. ; Walker, J. P. ; Wood, E. F. ; Pauwels, V. R. N.</creator><creatorcontrib>Lievens, H. ; Al Bitar, A. ; Verhoest, N. E. C. ; Cabot, F. ; De Lannoy, G. J. M. ; Drusch, M. ; Dumedah, G. ; Franssen, H.-J. Hendricks ; Kerr, Y. ; Tomer, S. K. ; Martens, B. ; Merlin, O. ; Pan, M. ; van den Berg, M. J. ; Vereecken, H. ; Walker, J. P. ; Wood, E. F. ; Pauwels, V. R. N.</creatorcontrib><description>The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-14-0052.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric models ; Bias ; Brightness ; Brightness temperature ; Calibration ; Civil engineering ; Climate ; Climatology ; Computer simulation ; Data ; Data assimilation ; Data collection ; Datasets ; Distribution functions ; Flood forecasting ; Global temperatures ; Horizontal polarization ; Hydrometeorology ; Infiltration ; Infiltration capacity ; Laboratories ; Land cover ; Land surface models ; Mathematical models ; Microwave emission ; Modeling ; Modelling ; Optimization ; Parameters ; Radiative transfer ; Remote sensing ; Rescaling ; Satellite observation ; Satellites ; Scaling ; Simulation ; Simulations ; Soil ; Soil improvement ; Soil moisture ; Soil water ; Soils ; Studies ; Surface radiation temperature ; Surface roughness ; Vegetation ; Vertical polarization</subject><ispartof>Journal of hydrometeorology, 2015-06, Vol.16 (3), p.1109-1134</ispartof><rights>2015 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d20218d125528fbe28f45df43b37d5bdc6a23cabc576f146ab4779df6b8ae8fd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24915458$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24915458$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,58221,58454</link.rule.ids></links><search><creatorcontrib>Lievens, H.</creatorcontrib><creatorcontrib>Al Bitar, A.</creatorcontrib><creatorcontrib>Verhoest, N. E. C.</creatorcontrib><creatorcontrib>Cabot, F.</creatorcontrib><creatorcontrib>De Lannoy, G. J. M.</creatorcontrib><creatorcontrib>Drusch, M.</creatorcontrib><creatorcontrib>Dumedah, G.</creatorcontrib><creatorcontrib>Franssen, H.-J. Hendricks</creatorcontrib><creatorcontrib>Kerr, Y.</creatorcontrib><creatorcontrib>Tomer, S. K.</creatorcontrib><creatorcontrib>Martens, B.</creatorcontrib><creatorcontrib>Merlin, O.</creatorcontrib><creatorcontrib>Pan, M.</creatorcontrib><creatorcontrib>van den Berg, M. J.</creatorcontrib><creatorcontrib>Vereecken, H.</creatorcontrib><creatorcontrib>Walker, J. P.</creatorcontrib><creatorcontrib>Wood, E. F.</creatorcontrib><creatorcontrib>Pauwels, V. R. N.</creatorcontrib><title>Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin</title><title>Journal of hydrometeorology</title><description>The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.</description><subject>Atmospheric models</subject><subject>Bias</subject><subject>Brightness</subject><subject>Brightness temperature</subject><subject>Calibration</subject><subject>Civil engineering</subject><subject>Climate</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Distribution functions</subject><subject>Flood forecasting</subject><subject>Global temperatures</subject><subject>Horizontal polarization</subject><subject>Hydrometeorology</subject><subject>Infiltration</subject><subject>Infiltration capacity</subject><subject>Laboratories</subject><subject>Land cover</subject><subject>Land surface models</subject><subject>Mathematical models</subject><subject>Microwave emission</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Radiative transfer</subject><subject>Remote sensing</subject><subject>Rescaling</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Soil</subject><subject>Soil improvement</subject><subject>Soil moisture</subject><subject>Soil water</subject><subject>Soils</subject><subject>Studies</subject><subject>Surface radiation temperature</subject><subject>Surface roughness</subject><subject>Vegetation</subject><subject>Vertical polarization</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhhdR8PPsSQh48bKaySab7dFaP2kp2AreQnaTaEp3sya7FT36y02teBCSTGZ43mGYN0mOAZ8DcHbxcDdJRynQFGNGzmEr2QNGWMoZhe2_P3veTfZDWGCM6QCKveRr2na2tp-ys65BziCJHqWyMV1pNPeyCUZ7dOP8u_QKTVvtZec8MvHObN0vI9i8oNlkOkNDb19eu0aHgOa6_iF7rwNyq9ihe9XoqY1FNLEhrE_bWjSUwTaHyY6Ry6CPfuNB8nRzPb-6S8fT2_ury3FaZYOsSxXBBAoFhDFSmFLHhzJlaFZmXLFSVbkkWSXLivHcAM1lSTkfKJOXhdSFUdlBcrbp23r31uvQidqGSi-XstGuDwI4BsoZp3lET_-hC9f7Jk4nYEDyghSY00hdbKjKuxC8NqL1tpb-QwAWa09E9ESMBFCx9kRAVJxsFIsQt_iHk-gFo6zIvgE3r4sc</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lievens, H.</creator><creator>Al Bitar, A.</creator><creator>Verhoest, N. E. C.</creator><creator>Cabot, F.</creator><creator>De Lannoy, G. J. M.</creator><creator>Drusch, M.</creator><creator>Dumedah, G.</creator><creator>Franssen, H.-J. Hendricks</creator><creator>Kerr, Y.</creator><creator>Tomer, S. K.</creator><creator>Martens, B.</creator><creator>Merlin, O.</creator><creator>Pan, M.</creator><creator>van den Berg, M. J.</creator><creator>Vereecken, H.</creator><creator>Walker, J. P.</creator><creator>Wood, E. F.</creator><creator>Pauwels, V. R. N.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7TV</scope></search><sort><creationdate>20150601</creationdate><title>Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin</title><author>Lievens, H. ; Al Bitar, A. ; Verhoest, N. E. C. ; Cabot, F. ; De Lannoy, G. J. M. ; Drusch, M. ; Dumedah, G. ; Franssen, H.-J. Hendricks ; Kerr, Y. ; Tomer, S. K. ; Martens, B. ; Merlin, O. ; Pan, M. ; van den Berg, M. J. ; Vereecken, H. ; Walker, J. P. ; Wood, E. F. ; Pauwels, V. R. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d20218d125528fbe28f45df43b37d5bdc6a23cabc576f146ab4779df6b8ae8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric models</topic><topic>Bias</topic><topic>Brightness</topic><topic>Brightness temperature</topic><topic>Calibration</topic><topic>Civil engineering</topic><topic>Climate</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Distribution functions</topic><topic>Flood forecasting</topic><topic>Global temperatures</topic><topic>Horizontal polarization</topic><topic>Hydrometeorology</topic><topic>Infiltration</topic><topic>Infiltration capacity</topic><topic>Laboratories</topic><topic>Land cover</topic><topic>Land surface models</topic><topic>Mathematical models</topic><topic>Microwave emission</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Radiative transfer</topic><topic>Remote sensing</topic><topic>Rescaling</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Soil</topic><topic>Soil improvement</topic><topic>Soil moisture</topic><topic>Soil water</topic><topic>Soils</topic><topic>Studies</topic><topic>Surface radiation temperature</topic><topic>Surface roughness</topic><topic>Vegetation</topic><topic>Vertical polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lievens, H.</creatorcontrib><creatorcontrib>Al Bitar, A.</creatorcontrib><creatorcontrib>Verhoest, N. E. C.</creatorcontrib><creatorcontrib>Cabot, F.</creatorcontrib><creatorcontrib>De Lannoy, G. J. M.</creatorcontrib><creatorcontrib>Drusch, M.</creatorcontrib><creatorcontrib>Dumedah, G.</creatorcontrib><creatorcontrib>Franssen, H.-J. Hendricks</creatorcontrib><creatorcontrib>Kerr, Y.</creatorcontrib><creatorcontrib>Tomer, S. K.</creatorcontrib><creatorcontrib>Martens, B.</creatorcontrib><creatorcontrib>Merlin, O.</creatorcontrib><creatorcontrib>Pan, M.</creatorcontrib><creatorcontrib>van den Berg, M. J.</creatorcontrib><creatorcontrib>Vereecken, H.</creatorcontrib><creatorcontrib>Walker, J. P.</creatorcontrib><creatorcontrib>Wood, E. F.</creatorcontrib><creatorcontrib>Pauwels, V. R. N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Pollution Abstracts</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lievens, H.</au><au>Al Bitar, A.</au><au>Verhoest, N. E. C.</au><au>Cabot, F.</au><au>De Lannoy, G. J. M.</au><au>Drusch, M.</au><au>Dumedah, G.</au><au>Franssen, H.-J. Hendricks</au><au>Kerr, Y.</au><au>Tomer, S. K.</au><au>Martens, B.</au><au>Merlin, O.</au><au>Pan, M.</au><au>van den Berg, M. J.</au><au>Vereecken, H.</au><au>Walker, J. P.</au><au>Wood, E. F.</au><au>Pauwels, V. R. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>16</volume><issue>3</issue><spage>1109</spage><epage>1134</epage><pages>1109-1134</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular observations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity model coupled with the Community Microwave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin, United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin-averaged bias of 30 K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative distribution function matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30 K to less than 5 K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-14-0052.1</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2015-06, Vol.16 (3), p.1109-1134 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701475746 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Atmospheric models Bias Brightness Brightness temperature Calibration Civil engineering Climate Climatology Computer simulation Data Data assimilation Data collection Datasets Distribution functions Flood forecasting Global temperatures Horizontal polarization Hydrometeorology Infiltration Infiltration capacity Laboratories Land cover Land surface models Mathematical models Microwave emission Modeling Modelling Optimization Parameters Radiative transfer Remote sensing Rescaling Satellite observation Satellites Scaling Simulation Simulations Soil Soil improvement Soil moisture Soil water Soils Studies Surface radiation temperature Surface roughness Vegetation Vertical polarization |
title | Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Radiative%20Transfer%20Forward%20Operator%20for%20Simulating%20SMOS%20Brightness%20Temperatures%20over%20the%20Upper%20Mississippi%20Basin&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Lievens,%20H.&rft.date=2015-06-01&rft.volume=16&rft.issue=3&rft.spage=1109&rft.epage=1134&rft.pages=1109-1134&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-14-0052.1&rft_dat=%3Cjstor_proqu%3E24915458%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-d20218d125528fbe28f45df43b37d5bdc6a23cabc576f146ab4779df6b8ae8fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1926828074&rft_id=info:pmid/&rft_jstor_id=24915458&rfr_iscdi=true |