Loading…
History of multimodel inference via model selection in wildlife science
We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's...
Saved in:
Published in: | The Journal of wildlife management 2015-07, Vol.79 (5), p.704-707 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3 |
---|---|
cites | |
container_end_page | 707 |
container_issue | 5 |
container_start_page | 704 |
container_title | The Journal of wildlife management |
container_volume | 79 |
creator | Lindberg, Mark S. Schmidt, Joshua H. Walker, Johann |
description | We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. |
doi_str_mv | 10.1002/jwmg.892 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701477348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24365814</jstor_id><sourcerecordid>24365814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRsFbBPyAEvHhJ3Y9kP44imiptvSgVL8tuspGN-ajZxNp_74ZIBU8D8z4MM88AcI7gDEGIr4tt9T7jAh-ACRKEhZgjdggmPsJhHKHXY3DiXAEhQYjTCUjm1nVNuwuaPKj6srNVk5kysHVuWlOnJviyKhh7zpQm7WxT-zTY2jIrbW4Cl9qBOwVHuSqdOfutU_Byf_d8Ow8XT8nD7c0iTAmnOGR5LjTVkERCa4gwyzKa6VQzLRhFqYlxKjKMM5zDjGCBGWRUacwNzrWiRpEpuBrnbtrmszeuk5V1qSlLVZumdxIxiCLGSMQ9evkPLZq-rf12ElEBEefCa5iCcKT8RWYnN62tVLuTCMpBpxx0Sq9TPq6Xia-evxj5YvC253FEaMxR9DfPezXf-1y1H5IywmK5XiVy6V-DVqulfCM_xWGCww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690188900</pqid></control><display><type>article</type><title>History of multimodel inference via model selection in wildlife science</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lindberg, Mark S. ; Schmidt, Joshua H. ; Walker, Johann</creator><creatorcontrib>Lindberg, Mark S. ; Schmidt, Joshua H. ; Walker, Johann</creatorcontrib><description>We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.1002/jwmg.892</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Bethesda: Blackwell Publishing Ltd</publisher><subject>AIC ; Applied ecology ; Ecological modeling ; history ; hypothesis testing ; Inference ; Metapopulation ecology ; model selection ; Modeling ; Multilevel models ; multimodel ; Multimodel Inference Special Section ; Null hypothesis ; Owls ; Parametric models ; Wildlife ; Wildlife ecology ; Wildlife management</subject><ispartof>The Journal of wildlife management, 2015-07, Vol.79 (5), p.704-707</ispartof><rights>Copyright© 2015 The Wildlife Society</rights><rights>Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>The Wildlife Society, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24365814$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24365814$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Lindberg, Mark S.</creatorcontrib><creatorcontrib>Schmidt, Joshua H.</creatorcontrib><creatorcontrib>Walker, Johann</creatorcontrib><title>History of multimodel inference via model selection in wildlife science</title><title>The Journal of wildlife management</title><addtitle>Jour. Wild. Mgmt</addtitle><description>We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</description><subject>AIC</subject><subject>Applied ecology</subject><subject>Ecological modeling</subject><subject>history</subject><subject>hypothesis testing</subject><subject>Inference</subject><subject>Metapopulation ecology</subject><subject>model selection</subject><subject>Modeling</subject><subject>Multilevel models</subject><subject>multimodel</subject><subject>Multimodel Inference Special Section</subject><subject>Null hypothesis</subject><subject>Owls</subject><subject>Parametric models</subject><subject>Wildlife</subject><subject>Wildlife ecology</subject><subject>Wildlife management</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1Lw0AQhhdRsFbBPyAEvHhJ3Y9kP44imiptvSgVL8tuspGN-ajZxNp_74ZIBU8D8z4MM88AcI7gDEGIr4tt9T7jAh-ACRKEhZgjdggmPsJhHKHXY3DiXAEhQYjTCUjm1nVNuwuaPKj6srNVk5kysHVuWlOnJviyKhh7zpQm7WxT-zTY2jIrbW4Cl9qBOwVHuSqdOfutU_Byf_d8Ow8XT8nD7c0iTAmnOGR5LjTVkERCa4gwyzKa6VQzLRhFqYlxKjKMM5zDjGCBGWRUacwNzrWiRpEpuBrnbtrmszeuk5V1qSlLVZumdxIxiCLGSMQ9evkPLZq-rf12ElEBEefCa5iCcKT8RWYnN62tVLuTCMpBpxx0Sq9TPq6Xia-evxj5YvC253FEaMxR9DfPezXf-1y1H5IywmK5XiVy6V-DVqulfCM_xWGCww</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Lindberg, Mark S.</creator><creator>Schmidt, Joshua H.</creator><creator>Walker, Johann</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201507</creationdate><title>History of multimodel inference via model selection in wildlife science</title><author>Lindberg, Mark S. ; Schmidt, Joshua H. ; Walker, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AIC</topic><topic>Applied ecology</topic><topic>Ecological modeling</topic><topic>history</topic><topic>hypothesis testing</topic><topic>Inference</topic><topic>Metapopulation ecology</topic><topic>model selection</topic><topic>Modeling</topic><topic>Multilevel models</topic><topic>multimodel</topic><topic>Multimodel Inference Special Section</topic><topic>Null hypothesis</topic><topic>Owls</topic><topic>Parametric models</topic><topic>Wildlife</topic><topic>Wildlife ecology</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindberg, Mark S.</creatorcontrib><creatorcontrib>Schmidt, Joshua H.</creatorcontrib><creatorcontrib>Walker, Johann</creatorcontrib><collection>Istex</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindberg, Mark S.</au><au>Schmidt, Joshua H.</au><au>Walker, Johann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>History of multimodel inference via model selection in wildlife science</atitle><jtitle>The Journal of wildlife management</jtitle><addtitle>Jour. Wild. Mgmt</addtitle><date>2015-07</date><risdate>2015</risdate><volume>79</volume><issue>5</issue><spage>704</spage><epage>707</epage><pages>704-707</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</abstract><cop>Bethesda</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jwmg.892</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-541X |
ispartof | The Journal of wildlife management, 2015-07, Vol.79 (5), p.704-707 |
issn | 0022-541X 1937-2817 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701477348 |
source | JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection |
subjects | AIC Applied ecology Ecological modeling history hypothesis testing Inference Metapopulation ecology model selection Modeling Multilevel models multimodel Multimodel Inference Special Section Null hypothesis Owls Parametric models Wildlife Wildlife ecology Wildlife management |
title | History of multimodel inference via model selection in wildlife science |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=History%20of%20multimodel%20inference%20via%20model%20selection%20in%20wildlife%20science&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=Lindberg,%20Mark%20S.&rft.date=2015-07&rft.volume=79&rft.issue=5&rft.spage=704&rft.epage=707&rft.pages=704-707&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.1002/jwmg.892&rft_dat=%3Cjstor_proqu%3E24365814%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1690188900&rft_id=info:pmid/&rft_jstor_id=24365814&rfr_iscdi=true |