Loading…

History of multimodel inference via model selection in wildlife science

We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of wildlife management 2015-07, Vol.79 (5), p.704-707
Main Authors: Lindberg, Mark S., Schmidt, Joshua H., Walker, Johann
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3
cites
container_end_page 707
container_issue 5
container_start_page 704
container_title The Journal of wildlife management
container_volume 79
creator Lindberg, Mark S.
Schmidt, Joshua H.
Walker, Johann
description We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
doi_str_mv 10.1002/jwmg.892
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701477348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24365814</jstor_id><sourcerecordid>24365814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRsFbBPyAEvHhJ3Y9kP44imiptvSgVL8tuspGN-ajZxNp_74ZIBU8D8z4MM88AcI7gDEGIr4tt9T7jAh-ACRKEhZgjdggmPsJhHKHXY3DiXAEhQYjTCUjm1nVNuwuaPKj6srNVk5kysHVuWlOnJviyKhh7zpQm7WxT-zTY2jIrbW4Cl9qBOwVHuSqdOfutU_Byf_d8Ow8XT8nD7c0iTAmnOGR5LjTVkERCa4gwyzKa6VQzLRhFqYlxKjKMM5zDjGCBGWRUacwNzrWiRpEpuBrnbtrmszeuk5V1qSlLVZumdxIxiCLGSMQ9evkPLZq-rf12ElEBEefCa5iCcKT8RWYnN62tVLuTCMpBpxx0Sq9TPq6Xia-evxj5YvC253FEaMxR9DfPezXf-1y1H5IywmK5XiVy6V-DVqulfCM_xWGCww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690188900</pqid></control><display><type>article</type><title>History of multimodel inference via model selection in wildlife science</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lindberg, Mark S. ; Schmidt, Joshua H. ; Walker, Johann</creator><creatorcontrib>Lindberg, Mark S. ; Schmidt, Joshua H. ; Walker, Johann</creatorcontrib><description>We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.1002/jwmg.892</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Bethesda: Blackwell Publishing Ltd</publisher><subject>AIC ; Applied ecology ; Ecological modeling ; history ; hypothesis testing ; Inference ; Metapopulation ecology ; model selection ; Modeling ; Multilevel models ; multimodel ; Multimodel Inference Special Section ; Null hypothesis ; Owls ; Parametric models ; Wildlife ; Wildlife ecology ; Wildlife management</subject><ispartof>The Journal of wildlife management, 2015-07, Vol.79 (5), p.704-707</ispartof><rights>Copyright© 2015 The Wildlife Society</rights><rights>Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>The Wildlife Society, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24365814$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24365814$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Lindberg, Mark S.</creatorcontrib><creatorcontrib>Schmidt, Joshua H.</creatorcontrib><creatorcontrib>Walker, Johann</creatorcontrib><title>History of multimodel inference via model selection in wildlife science</title><title>The Journal of wildlife management</title><addtitle>Jour. Wild. Mgmt</addtitle><description>We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</description><subject>AIC</subject><subject>Applied ecology</subject><subject>Ecological modeling</subject><subject>history</subject><subject>hypothesis testing</subject><subject>Inference</subject><subject>Metapopulation ecology</subject><subject>model selection</subject><subject>Modeling</subject><subject>Multilevel models</subject><subject>multimodel</subject><subject>Multimodel Inference Special Section</subject><subject>Null hypothesis</subject><subject>Owls</subject><subject>Parametric models</subject><subject>Wildlife</subject><subject>Wildlife ecology</subject><subject>Wildlife management</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1Lw0AQhhdRsFbBPyAEvHhJ3Y9kP44imiptvSgVL8tuspGN-ajZxNp_74ZIBU8D8z4MM88AcI7gDEGIr4tt9T7jAh-ACRKEhZgjdggmPsJhHKHXY3DiXAEhQYjTCUjm1nVNuwuaPKj6srNVk5kysHVuWlOnJviyKhh7zpQm7WxT-zTY2jIrbW4Cl9qBOwVHuSqdOfutU_Byf_d8Ow8XT8nD7c0iTAmnOGR5LjTVkERCa4gwyzKa6VQzLRhFqYlxKjKMM5zDjGCBGWRUacwNzrWiRpEpuBrnbtrmszeuk5V1qSlLVZumdxIxiCLGSMQ9evkPLZq-rf12ElEBEefCa5iCcKT8RWYnN62tVLuTCMpBpxx0Sq9TPq6Xia-evxj5YvC253FEaMxR9DfPezXf-1y1H5IywmK5XiVy6V-DVqulfCM_xWGCww</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Lindberg, Mark S.</creator><creator>Schmidt, Joshua H.</creator><creator>Walker, Johann</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201507</creationdate><title>History of multimodel inference via model selection in wildlife science</title><author>Lindberg, Mark S. ; Schmidt, Joshua H. ; Walker, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AIC</topic><topic>Applied ecology</topic><topic>Ecological modeling</topic><topic>history</topic><topic>hypothesis testing</topic><topic>Inference</topic><topic>Metapopulation ecology</topic><topic>model selection</topic><topic>Modeling</topic><topic>Multilevel models</topic><topic>multimodel</topic><topic>Multimodel Inference Special Section</topic><topic>Null hypothesis</topic><topic>Owls</topic><topic>Parametric models</topic><topic>Wildlife</topic><topic>Wildlife ecology</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindberg, Mark S.</creatorcontrib><creatorcontrib>Schmidt, Joshua H.</creatorcontrib><creatorcontrib>Walker, Johann</creatorcontrib><collection>Istex</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindberg, Mark S.</au><au>Schmidt, Joshua H.</au><au>Walker, Johann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>History of multimodel inference via model selection in wildlife science</atitle><jtitle>The Journal of wildlife management</jtitle><addtitle>Jour. Wild. Mgmt</addtitle><date>2015-07</date><risdate>2015</risdate><volume>79</volume><issue>5</issue><spage>704</spage><epage>707</epage><pages>704-707</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>We examined changes in the pathways used for inference in The Journal of Wildlife Management (JWM) and 2 other applied journals during recent decades. Although null hypothesis significance testing is still the main approach to inference, use of information-theoretic approaches based on Akaike's Information Criterion (AIC) has rapidly grown to be a common form of inference in JWM and related journals. We observed little growth in the use of other information criteria such as Bayesian Information Criterion (BIC). The use of information criteria for multimodel inference has addressed some of the criticisms of significance testing. However, information criteria still needs to be used appropriately with a priori hypotheses to be valid. In addition, much work remains to be done on application of information criteria to more complex models such as hierarchical and Bayesian models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.</abstract><cop>Bethesda</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jwmg.892</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-541X
ispartof The Journal of wildlife management, 2015-07, Vol.79 (5), p.704-707
issn 0022-541X
1937-2817
language eng
recordid cdi_proquest_miscellaneous_1701477348
source JSTOR Archival Journals and Primary Sources Collection; Wiley-Blackwell Read & Publish Collection
subjects AIC
Applied ecology
Ecological modeling
history
hypothesis testing
Inference
Metapopulation ecology
model selection
Modeling
Multilevel models
multimodel
Multimodel Inference Special Section
Null hypothesis
Owls
Parametric models
Wildlife
Wildlife ecology
Wildlife management
title History of multimodel inference via model selection in wildlife science
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=History%20of%20multimodel%20inference%20via%20model%20selection%20in%20wildlife%20science&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=Lindberg,%20Mark%20S.&rft.date=2015-07&rft.volume=79&rft.issue=5&rft.spage=704&rft.epage=707&rft.pages=704-707&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.1002/jwmg.892&rft_dat=%3Cjstor_proqu%3E24365814%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3862-7ff9b6b0349bb0127dd6dbcb7b9761ce52c9d22d2f0d32927076ab28e2fba6ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1690188900&rft_id=info:pmid/&rft_jstor_id=24365814&rfr_iscdi=true