Loading…

Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas

In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology. Bioenergy 2015-07, Vol.7 (4), p.888-898
Main Authors: Van Meerbeek, Koenraad, Appels, Lise, Dewil, Raf, Van Beek, Jonathan, Bellings, Lore, Liebert, Kenny, Muys, Bart, Hermy, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133
cites cdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133
container_end_page 898
container_issue 4
container_start_page 888
container_title Global change biology. Bioenergy
container_volume 7
creator Van Meerbeek, Koenraad
Appels, Lise
Dewil, Raf
Van Beek, Jonathan
Bellings, Lore
Liebert, Kenny
Muys, Bart
Hermy, Martin
description In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277  GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.
doi_str_mv 10.1111/gcbb.12208
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701477488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290013722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</originalsourceid><addsrcrecordid>eNp9kcFKxDAQhosoqKsXnyDgRYTVpGmb5uguugoLXvQcknS6G2mTNWmV3sQn8Bl9ErNWLx4cGCYTvvzM5E-SE4IvSIzLlVbqgqQpLneSA8JyNiUMs93fc8HpfnIYwhPGRV4QfpC8X1vwqwFtXAe2M7JBtfNIu1b1oTPOImmrmBK8U0ajyqxgvHc1Usa1MgRUe9eixr1-vn0Yu-k7tDardWwq8wI-mG5AYQgdtAEZG6VtAP8iR3EPMhwle7VsAhz_1EnyeHP9ML-dLu8Xd_Or5VRThstplmqVYZ7JQtd5TWuuJFc8L3XGOKRACK0klJCrShdASsUZrvIyl7LKgFJC6SQ5G3U33j33cQ3RmqChaaQF1wcRf4pkjGVlGdHTP-iT672N04k05RgTytI0Uucjpb0LwUMtNt600g-CYLG1Q2ztEN92RJiM8KtpYPiHFIv5bDa--QJCnJGn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290013722</pqid></control><display><type>article</type><title>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</title><source>Wiley Online Library Open Access</source><creator>Van Meerbeek, Koenraad ; Appels, Lise ; Dewil, Raf ; Van Beek, Jonathan ; Bellings, Lore ; Liebert, Kenny ; Muys, Bart ; Hermy, Martin</creator><creatorcontrib>Van Meerbeek, Koenraad ; Appels, Lise ; Dewil, Raf ; Van Beek, Jonathan ; Bellings, Lore ; Liebert, Kenny ; Muys, Bart ; Hermy, Martin</creatorcontrib><description>In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277  GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.12208</identifier><language>eng</language><publisher>Oxford: John Wiley &amp; Sons, Inc</publisher><subject>Agricultural production ; Alternative energy sources ; Anaerobic digestion ; Anaerobic processes ; Biochemical composition ; Biodiesel fuels ; Biodiversity ; bioenergy ; Biogas ; Biomass ; Biomass burning ; Biomass energy production ; biomethane potential ; Cellulose ; Climate change ; Combustion ; Composition ; Conservation ; Conservation areas ; Ecosystems ; Energy conversion efficiency ; Energy efficiency ; Energy policy ; Energy resources ; Ethanol ; Food production ; Functional groups ; Grasslands ; gross calorific value ; Harvest ; Hemicellulose ; Herbs ; Lignin ; Lignocellulose ; LIHD systems ; Marshes ; Moisture content ; Mowing ; nature reserve ; Pesticides ; Plant communities ; plant functional group ; Plant populations ; Renewable energy ; Renewable resources ; seminatural vegetation ; van soest fractionation ; Vegetation ; Water content</subject><ispartof>Global change biology. Bioenergy, 2015-07, Vol.7 (4), p.888-898</ispartof><rights>2014 John Wiley &amp; Sons Ltd</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</citedby><cites>FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290013722/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290013722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,37013,44590,46052,46476,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12208$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Van Meerbeek, Koenraad</creatorcontrib><creatorcontrib>Appels, Lise</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Van Beek, Jonathan</creatorcontrib><creatorcontrib>Bellings, Lore</creatorcontrib><creatorcontrib>Liebert, Kenny</creatorcontrib><creatorcontrib>Muys, Bart</creatorcontrib><creatorcontrib>Hermy, Martin</creatorcontrib><title>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</title><title>Global change biology. Bioenergy</title><description>In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277  GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.</description><subject>Agricultural production</subject><subject>Alternative energy sources</subject><subject>Anaerobic digestion</subject><subject>Anaerobic processes</subject><subject>Biochemical composition</subject><subject>Biodiesel fuels</subject><subject>Biodiversity</subject><subject>bioenergy</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass energy production</subject><subject>biomethane potential</subject><subject>Cellulose</subject><subject>Climate change</subject><subject>Combustion</subject><subject>Composition</subject><subject>Conservation</subject><subject>Conservation areas</subject><subject>Ecosystems</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Energy policy</subject><subject>Energy resources</subject><subject>Ethanol</subject><subject>Food production</subject><subject>Functional groups</subject><subject>Grasslands</subject><subject>gross calorific value</subject><subject>Harvest</subject><subject>Hemicellulose</subject><subject>Herbs</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>LIHD systems</subject><subject>Marshes</subject><subject>Moisture content</subject><subject>Mowing</subject><subject>nature reserve</subject><subject>Pesticides</subject><subject>Plant communities</subject><subject>plant functional group</subject><subject>Plant populations</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>seminatural vegetation</subject><subject>van soest fractionation</subject><subject>Vegetation</subject><subject>Water content</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcFKxDAQhosoqKsXnyDgRYTVpGmb5uguugoLXvQcknS6G2mTNWmV3sQn8Bl9ErNWLx4cGCYTvvzM5E-SE4IvSIzLlVbqgqQpLneSA8JyNiUMs93fc8HpfnIYwhPGRV4QfpC8X1vwqwFtXAe2M7JBtfNIu1b1oTPOImmrmBK8U0ajyqxgvHc1Usa1MgRUe9eixr1-vn0Yu-k7tDardWwq8wI-mG5AYQgdtAEZG6VtAP8iR3EPMhwle7VsAhz_1EnyeHP9ML-dLu8Xd_Or5VRThstplmqVYZ7JQtd5TWuuJFc8L3XGOKRACK0klJCrShdASsUZrvIyl7LKgFJC6SQ5G3U33j33cQ3RmqChaaQF1wcRf4pkjGVlGdHTP-iT672N04k05RgTytI0Uucjpb0LwUMtNt600g-CYLG1Q2ztEN92RJiM8KtpYPiHFIv5bDa--QJCnJGn</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Van Meerbeek, Koenraad</creator><creator>Appels, Lise</creator><creator>Dewil, Raf</creator><creator>Van Beek, Jonathan</creator><creator>Bellings, Lore</creator><creator>Liebert, Kenny</creator><creator>Muys, Bart</creator><creator>Hermy, Martin</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201507</creationdate><title>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</title><author>Van Meerbeek, Koenraad ; Appels, Lise ; Dewil, Raf ; Van Beek, Jonathan ; Bellings, Lore ; Liebert, Kenny ; Muys, Bart ; Hermy, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural production</topic><topic>Alternative energy sources</topic><topic>Anaerobic digestion</topic><topic>Anaerobic processes</topic><topic>Biochemical composition</topic><topic>Biodiesel fuels</topic><topic>Biodiversity</topic><topic>bioenergy</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass energy production</topic><topic>biomethane potential</topic><topic>Cellulose</topic><topic>Climate change</topic><topic>Combustion</topic><topic>Composition</topic><topic>Conservation</topic><topic>Conservation areas</topic><topic>Ecosystems</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Energy policy</topic><topic>Energy resources</topic><topic>Ethanol</topic><topic>Food production</topic><topic>Functional groups</topic><topic>Grasslands</topic><topic>gross calorific value</topic><topic>Harvest</topic><topic>Hemicellulose</topic><topic>Herbs</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>LIHD systems</topic><topic>Marshes</topic><topic>Moisture content</topic><topic>Mowing</topic><topic>nature reserve</topic><topic>Pesticides</topic><topic>Plant communities</topic><topic>plant functional group</topic><topic>Plant populations</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>seminatural vegetation</topic><topic>van soest fractionation</topic><topic>Vegetation</topic><topic>Water content</topic><toplevel>online_resources</toplevel><creatorcontrib>Van Meerbeek, Koenraad</creatorcontrib><creatorcontrib>Appels, Lise</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Van Beek, Jonathan</creatorcontrib><creatorcontrib>Bellings, Lore</creatorcontrib><creatorcontrib>Liebert, Kenny</creatorcontrib><creatorcontrib>Muys, Bart</creatorcontrib><creatorcontrib>Hermy, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van Meerbeek, Koenraad</au><au>Appels, Lise</au><au>Dewil, Raf</au><au>Van Beek, Jonathan</au><au>Bellings, Lore</au><au>Liebert, Kenny</au><au>Muys, Bart</au><au>Hermy, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2015-07</date><risdate>2015</risdate><volume>7</volume><issue>4</issue><spage>888</spage><epage>898</epage><pages>888-898</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277  GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.</abstract><cop>Oxford</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/gcbb.12208</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1757-1693
ispartof Global change biology. Bioenergy, 2015-07, Vol.7 (4), p.888-898
issn 1757-1693
1757-1707
language eng
recordid cdi_proquest_miscellaneous_1701477488
source Wiley Online Library Open Access
subjects Agricultural production
Alternative energy sources
Anaerobic digestion
Anaerobic processes
Biochemical composition
Biodiesel fuels
Biodiversity
bioenergy
Biogas
Biomass
Biomass burning
Biomass energy production
biomethane potential
Cellulose
Climate change
Combustion
Composition
Conservation
Conservation areas
Ecosystems
Energy conversion efficiency
Energy efficiency
Energy policy
Energy resources
Ethanol
Food production
Functional groups
Grasslands
gross calorific value
Harvest
Hemicellulose
Herbs
Lignin
Lignocellulose
LIHD systems
Marshes
Moisture content
Mowing
nature reserve
Pesticides
Plant communities
plant functional group
Plant populations
Renewable energy
Renewable resources
seminatural vegetation
van soest fractionation
Vegetation
Water content
title Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20potential%20for%20combustion%20and%20anaerobic%20digestion%20of%20biomass%20from%20low%E2%80%90input%20high%E2%80%90diversity%20systems%20in%20conservation%20areas&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=Van%20Meerbeek,%20Koenraad&rft.date=2015-07&rft.volume=7&rft.issue=4&rft.spage=888&rft.epage=898&rft.pages=888-898&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.12208&rft_dat=%3Cproquest_24P%3E2290013722%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290013722&rft_id=info:pmid/&rfr_iscdi=true