Loading…
Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas
In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass...
Saved in:
Published in: | Global change biology. Bioenergy 2015-07, Vol.7 (4), p.888-898 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133 |
---|---|
cites | cdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133 |
container_end_page | 898 |
container_issue | 4 |
container_start_page | 888 |
container_title | Global change biology. Bioenergy |
container_volume | 7 |
creator | Van Meerbeek, Koenraad Appels, Lise Dewil, Raf Van Beek, Jonathan Bellings, Lore Liebert, Kenny Muys, Bart Hermy, Martin |
description | In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277 GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals. |
doi_str_mv | 10.1111/gcbb.12208 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701477488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290013722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</originalsourceid><addsrcrecordid>eNp9kcFKxDAQhosoqKsXnyDgRYTVpGmb5uguugoLXvQcknS6G2mTNWmV3sQn8Bl9ErNWLx4cGCYTvvzM5E-SE4IvSIzLlVbqgqQpLneSA8JyNiUMs93fc8HpfnIYwhPGRV4QfpC8X1vwqwFtXAe2M7JBtfNIu1b1oTPOImmrmBK8U0ajyqxgvHc1Usa1MgRUe9eixr1-vn0Yu-k7tDardWwq8wI-mG5AYQgdtAEZG6VtAP8iR3EPMhwle7VsAhz_1EnyeHP9ML-dLu8Xd_Or5VRThstplmqVYZ7JQtd5TWuuJFc8L3XGOKRACK0klJCrShdASsUZrvIyl7LKgFJC6SQ5G3U33j33cQ3RmqChaaQF1wcRf4pkjGVlGdHTP-iT672N04k05RgTytI0Uucjpb0LwUMtNt600g-CYLG1Q2ztEN92RJiM8KtpYPiHFIv5bDa--QJCnJGn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290013722</pqid></control><display><type>article</type><title>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</title><source>Wiley Online Library Open Access</source><creator>Van Meerbeek, Koenraad ; Appels, Lise ; Dewil, Raf ; Van Beek, Jonathan ; Bellings, Lore ; Liebert, Kenny ; Muys, Bart ; Hermy, Martin</creator><creatorcontrib>Van Meerbeek, Koenraad ; Appels, Lise ; Dewil, Raf ; Van Beek, Jonathan ; Bellings, Lore ; Liebert, Kenny ; Muys, Bart ; Hermy, Martin</creatorcontrib><description>In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277 GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.</description><identifier>ISSN: 1757-1693</identifier><identifier>EISSN: 1757-1707</identifier><identifier>DOI: 10.1111/gcbb.12208</identifier><language>eng</language><publisher>Oxford: John Wiley & Sons, Inc</publisher><subject>Agricultural production ; Alternative energy sources ; Anaerobic digestion ; Anaerobic processes ; Biochemical composition ; Biodiesel fuels ; Biodiversity ; bioenergy ; Biogas ; Biomass ; Biomass burning ; Biomass energy production ; biomethane potential ; Cellulose ; Climate change ; Combustion ; Composition ; Conservation ; Conservation areas ; Ecosystems ; Energy conversion efficiency ; Energy efficiency ; Energy policy ; Energy resources ; Ethanol ; Food production ; Functional groups ; Grasslands ; gross calorific value ; Harvest ; Hemicellulose ; Herbs ; Lignin ; Lignocellulose ; LIHD systems ; Marshes ; Moisture content ; Mowing ; nature reserve ; Pesticides ; Plant communities ; plant functional group ; Plant populations ; Renewable energy ; Renewable resources ; seminatural vegetation ; van soest fractionation ; Vegetation ; Water content</subject><ispartof>Global change biology. Bioenergy, 2015-07, Vol.7 (4), p.888-898</ispartof><rights>2014 John Wiley & Sons Ltd</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</citedby><cites>FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2290013722/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2290013722?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11562,25753,27924,27925,37012,37013,44590,46052,46476,75126</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12208$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Van Meerbeek, Koenraad</creatorcontrib><creatorcontrib>Appels, Lise</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Van Beek, Jonathan</creatorcontrib><creatorcontrib>Bellings, Lore</creatorcontrib><creatorcontrib>Liebert, Kenny</creatorcontrib><creatorcontrib>Muys, Bart</creatorcontrib><creatorcontrib>Hermy, Martin</creatorcontrib><title>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</title><title>Global change biology. Bioenergy</title><description>In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277 GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.</description><subject>Agricultural production</subject><subject>Alternative energy sources</subject><subject>Anaerobic digestion</subject><subject>Anaerobic processes</subject><subject>Biochemical composition</subject><subject>Biodiesel fuels</subject><subject>Biodiversity</subject><subject>bioenergy</subject><subject>Biogas</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass energy production</subject><subject>biomethane potential</subject><subject>Cellulose</subject><subject>Climate change</subject><subject>Combustion</subject><subject>Composition</subject><subject>Conservation</subject><subject>Conservation areas</subject><subject>Ecosystems</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Energy policy</subject><subject>Energy resources</subject><subject>Ethanol</subject><subject>Food production</subject><subject>Functional groups</subject><subject>Grasslands</subject><subject>gross calorific value</subject><subject>Harvest</subject><subject>Hemicellulose</subject><subject>Herbs</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>LIHD systems</subject><subject>Marshes</subject><subject>Moisture content</subject><subject>Mowing</subject><subject>nature reserve</subject><subject>Pesticides</subject><subject>Plant communities</subject><subject>plant functional group</subject><subject>Plant populations</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>seminatural vegetation</subject><subject>van soest fractionation</subject><subject>Vegetation</subject><subject>Water content</subject><issn>1757-1693</issn><issn>1757-1707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcFKxDAQhosoqKsXnyDgRYTVpGmb5uguugoLXvQcknS6G2mTNWmV3sQn8Bl9ErNWLx4cGCYTvvzM5E-SE4IvSIzLlVbqgqQpLneSA8JyNiUMs93fc8HpfnIYwhPGRV4QfpC8X1vwqwFtXAe2M7JBtfNIu1b1oTPOImmrmBK8U0ajyqxgvHc1Usa1MgRUe9eixr1-vn0Yu-k7tDardWwq8wI-mG5AYQgdtAEZG6VtAP8iR3EPMhwle7VsAhz_1EnyeHP9ML-dLu8Xd_Or5VRThstplmqVYZ7JQtd5TWuuJFc8L3XGOKRACK0klJCrShdASsUZrvIyl7LKgFJC6SQ5G3U33j33cQ3RmqChaaQF1wcRf4pkjGVlGdHTP-iT672N04k05RgTytI0Uucjpb0LwUMtNt600g-CYLG1Q2ztEN92RJiM8KtpYPiHFIv5bDa--QJCnJGn</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Van Meerbeek, Koenraad</creator><creator>Appels, Lise</creator><creator>Dewil, Raf</creator><creator>Van Beek, Jonathan</creator><creator>Bellings, Lore</creator><creator>Liebert, Kenny</creator><creator>Muys, Bart</creator><creator>Hermy, Martin</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201507</creationdate><title>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</title><author>Van Meerbeek, Koenraad ; Appels, Lise ; Dewil, Raf ; Van Beek, Jonathan ; Bellings, Lore ; Liebert, Kenny ; Muys, Bart ; Hermy, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural production</topic><topic>Alternative energy sources</topic><topic>Anaerobic digestion</topic><topic>Anaerobic processes</topic><topic>Biochemical composition</topic><topic>Biodiesel fuels</topic><topic>Biodiversity</topic><topic>bioenergy</topic><topic>Biogas</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass energy production</topic><topic>biomethane potential</topic><topic>Cellulose</topic><topic>Climate change</topic><topic>Combustion</topic><topic>Composition</topic><topic>Conservation</topic><topic>Conservation areas</topic><topic>Ecosystems</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Energy policy</topic><topic>Energy resources</topic><topic>Ethanol</topic><topic>Food production</topic><topic>Functional groups</topic><topic>Grasslands</topic><topic>gross calorific value</topic><topic>Harvest</topic><topic>Hemicellulose</topic><topic>Herbs</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>LIHD systems</topic><topic>Marshes</topic><topic>Moisture content</topic><topic>Mowing</topic><topic>nature reserve</topic><topic>Pesticides</topic><topic>Plant communities</topic><topic>plant functional group</topic><topic>Plant populations</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>seminatural vegetation</topic><topic>van soest fractionation</topic><topic>Vegetation</topic><topic>Water content</topic><toplevel>online_resources</toplevel><creatorcontrib>Van Meerbeek, Koenraad</creatorcontrib><creatorcontrib>Appels, Lise</creatorcontrib><creatorcontrib>Dewil, Raf</creatorcontrib><creatorcontrib>Van Beek, Jonathan</creatorcontrib><creatorcontrib>Bellings, Lore</creatorcontrib><creatorcontrib>Liebert, Kenny</creatorcontrib><creatorcontrib>Muys, Bart</creatorcontrib><creatorcontrib>Hermy, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Global change biology. Bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Van Meerbeek, Koenraad</au><au>Appels, Lise</au><au>Dewil, Raf</au><au>Van Beek, Jonathan</au><au>Bellings, Lore</au><au>Liebert, Kenny</au><au>Muys, Bart</au><au>Hermy, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas</atitle><jtitle>Global change biology. Bioenergy</jtitle><date>2015-07</date><risdate>2015</risdate><volume>7</volume><issue>4</issue><spage>888</spage><epage>898</epage><pages>888-898</pages><issn>1757-1693</issn><eissn>1757-1707</eissn><abstract>In this study, we assessed the potential for bioenergy production of Low‐Input High‐Diversity (LIHD) systems in temperate West‐European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall‐herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277 GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall‐herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.</abstract><cop>Oxford</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/gcbb.12208</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1757-1693 |
ispartof | Global change biology. Bioenergy, 2015-07, Vol.7 (4), p.888-898 |
issn | 1757-1693 1757-1707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701477488 |
source | Wiley Online Library Open Access |
subjects | Agricultural production Alternative energy sources Anaerobic digestion Anaerobic processes Biochemical composition Biodiesel fuels Biodiversity bioenergy Biogas Biomass Biomass burning Biomass energy production biomethane potential Cellulose Climate change Combustion Composition Conservation Conservation areas Ecosystems Energy conversion efficiency Energy efficiency Energy policy Energy resources Ethanol Food production Functional groups Grasslands gross calorific value Harvest Hemicellulose Herbs Lignin Lignocellulose LIHD systems Marshes Moisture content Mowing nature reserve Pesticides Plant communities plant functional group Plant populations Renewable energy Renewable resources seminatural vegetation van soest fractionation Vegetation Water content |
title | Energy potential for combustion and anaerobic digestion of biomass from low‐input high‐diversity systems in conservation areas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20potential%20for%20combustion%20and%20anaerobic%20digestion%20of%20biomass%20from%20low%E2%80%90input%20high%E2%80%90diversity%20systems%20in%20conservation%20areas&rft.jtitle=Global%20change%20biology.%20Bioenergy&rft.au=Van%20Meerbeek,%20Koenraad&rft.date=2015-07&rft.volume=7&rft.issue=4&rft.spage=888&rft.epage=898&rft.pages=888-898&rft.issn=1757-1693&rft.eissn=1757-1707&rft_id=info:doi/10.1111/gcbb.12208&rft_dat=%3Cproquest_24P%3E2290013722%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3708-42cb4094a6cf5f3f9ba9b958c479e2e113dae8e5bdc6e18b970d585aad4e33133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290013722&rft_id=info:pmid/&rfr_iscdi=true |