Loading…
Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability
Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient de...
Saved in:
Published in: | Physics in medicine & biology 2014-10, Vol.59 (20), p.5987-6004 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93 |
container_end_page | 6004 |
container_issue | 20 |
container_start_page | 5987 |
container_title | Physics in medicine & biology |
container_volume | 59 |
creator | Nhan, Tam Burgess, Alison Lilge, Lothar Hynynen, Kullervo |
description | Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. |
doi_str_mv | 10.1088/0031-9155/59/20/5987 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701478487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701478487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1U1C6l_wAhH3sJOxMnjnOsWr6kIi5wtux4Ql15462dFJYDvx1HW3rk4pFHzzv2PIy9QXiHoNQWQGDVY9tu235bQzlV94JtUEisZCvhhG2ekTP2Kud7AERVN6fsrG5rAQiwYX--REfBTz94iIMJ_jc5vjYeKR14HPlN_BXTYv3gJz5HPt8Rt8mUyxhDiD_X4BiHJZfYEuZkclwmx2m6M9NQejbE6KpjwpqUPCW-p7QjY33w8-E1ezmakOniqZ6z7x_ef7v-VN1-_fj5-uq2GoTCuRLYqgap7keUwmH5uTHOysYKO5KTVklwjZFK9hIb21kE29d2BNGTdWR7cc4uj3P3KT4slGe983mgEMxEcckaO8CmU43qCtoc0SHFnBONep_8zqSDRtCreb1q1atW3fa6Br2aL7G3Ty8sdkfuOfRPdQHgCPi41_dxSVNZ-P8z_wLAL4-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701478487</pqid></control><display><type>article</type><title>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</title><source>Institute of Physics</source><creator>Nhan, Tam ; Burgess, Alison ; Lilge, Lothar ; Hynynen, Kullervo</creator><creatorcontrib>Nhan, Tam ; Burgess, Alison ; Lilge, Lothar ; Hynynen, Kullervo</creatorcontrib><description>Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/59/20/5987</identifier><identifier>PMID: 25230100</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Antineoplastic Agents - administration & dosage ; Antineoplastic Agents - pharmacokinetics ; BBB opening ; Blood-Brain Barrier - metabolism ; Blood-Brain Barrier - radiation effects ; Capillary Permeability ; doxorubicin ; Doxorubicin - administration & dosage ; Doxorubicin - pharmacokinetics ; Drug Delivery Systems - methods ; focused ultrasound ; Humans ; modeling ; Models, Biological ; Sonication - methods</subject><ispartof>Physics in medicine & biology, 2014-10, Vol.59 (20), p.5987-6004</ispartof><rights>2014 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</citedby><cites>FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25230100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nhan, Tam</creatorcontrib><creatorcontrib>Burgess, Alison</creatorcontrib><creatorcontrib>Lilge, Lothar</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><title>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.</description><subject>Animals</subject><subject>Antineoplastic Agents - administration & dosage</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>BBB opening</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-Brain Barrier - radiation effects</subject><subject>Capillary Permeability</subject><subject>doxorubicin</subject><subject>Doxorubicin - administration & dosage</subject><subject>Doxorubicin - pharmacokinetics</subject><subject>Drug Delivery Systems - methods</subject><subject>focused ultrasound</subject><subject>Humans</subject><subject>modeling</subject><subject>Models, Biological</subject><subject>Sonication - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi1U1C6l_wAhH3sJOxMnjnOsWr6kIi5wtux4Ql15462dFJYDvx1HW3rk4pFHzzv2PIy9QXiHoNQWQGDVY9tu235bQzlV94JtUEisZCvhhG2ekTP2Kud7AERVN6fsrG5rAQiwYX--REfBTz94iIMJ_jc5vjYeKR14HPlN_BXTYv3gJz5HPt8Rt8mUyxhDiD_X4BiHJZfYEuZkclwmx2m6M9NQejbE6KpjwpqUPCW-p7QjY33w8-E1ezmakOniqZ6z7x_ef7v-VN1-_fj5-uq2GoTCuRLYqgap7keUwmH5uTHOysYKO5KTVklwjZFK9hIb21kE29d2BNGTdWR7cc4uj3P3KT4slGe983mgEMxEcckaO8CmU43qCtoc0SHFnBONep_8zqSDRtCreb1q1atW3fa6Br2aL7G3Ty8sdkfuOfRPdQHgCPi41_dxSVNZ-P8z_wLAL4-e</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Nhan, Tam</creator><creator>Burgess, Alison</creator><creator>Lilge, Lothar</creator><creator>Hynynen, Kullervo</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141021</creationdate><title>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</title><author>Nhan, Tam ; Burgess, Alison ; Lilge, Lothar ; Hynynen, Kullervo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - administration & dosage</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>BBB opening</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-Brain Barrier - radiation effects</topic><topic>Capillary Permeability</topic><topic>doxorubicin</topic><topic>Doxorubicin - administration & dosage</topic><topic>Doxorubicin - pharmacokinetics</topic><topic>Drug Delivery Systems - methods</topic><topic>focused ultrasound</topic><topic>Humans</topic><topic>modeling</topic><topic>Models, Biological</topic><topic>Sonication - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nhan, Tam</creatorcontrib><creatorcontrib>Burgess, Alison</creatorcontrib><creatorcontrib>Lilge, Lothar</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nhan, Tam</au><au>Burgess, Alison</au><au>Lilge, Lothar</au><au>Hynynen, Kullervo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>59</volume><issue>20</issue><spage>5987</spage><epage>6004</epage><pages>5987-6004</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25230100</pmid><doi>10.1088/0031-9155/59/20/5987</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2014-10, Vol.59 (20), p.5987-6004 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701478487 |
source | Institute of Physics |
subjects | Animals Antineoplastic Agents - administration & dosage Antineoplastic Agents - pharmacokinetics BBB opening Blood-Brain Barrier - metabolism Blood-Brain Barrier - radiation effects Capillary Permeability doxorubicin Doxorubicin - administration & dosage Doxorubicin - pharmacokinetics Drug Delivery Systems - methods focused ultrasound Humans modeling Models, Biological Sonication - methods |
title | Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20localized%20delivery%20of%20Doxorubicin%20to%20the%20brain%20following%20focused%20ultrasound%20enhanced%20blood-brain%20barrier%20permeability&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Nhan,%20Tam&rft.date=2014-10-21&rft.volume=59&rft.issue=20&rft.spage=5987&rft.epage=6004&rft.pages=5987-6004&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/59/20/5987&rft_dat=%3Cproquest_iop_j%3E1701478487%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701478487&rft_id=info:pmid/25230100&rfr_iscdi=true |