Loading…

Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient de...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2014-10, Vol.59 (20), p.5987-6004
Main Authors: Nhan, Tam, Burgess, Alison, Lilge, Lothar, Hynynen, Kullervo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93
cites cdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93
container_end_page 6004
container_issue 20
container_start_page 5987
container_title Physics in medicine & biology
container_volume 59
creator Nhan, Tam
Burgess, Alison
Lilge, Lothar
Hynynen, Kullervo
description Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.
doi_str_mv 10.1088/0031-9155/59/20/5987
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701478487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701478487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1U1C6l_wAhH3sJOxMnjnOsWr6kIi5wtux4Ql15462dFJYDvx1HW3rk4pFHzzv2PIy9QXiHoNQWQGDVY9tu235bQzlV94JtUEisZCvhhG2ekTP2Kud7AERVN6fsrG5rAQiwYX--REfBTz94iIMJ_jc5vjYeKR14HPlN_BXTYv3gJz5HPt8Rt8mUyxhDiD_X4BiHJZfYEuZkclwmx2m6M9NQejbE6KpjwpqUPCW-p7QjY33w8-E1ezmakOniqZ6z7x_ef7v-VN1-_fj5-uq2GoTCuRLYqgap7keUwmH5uTHOysYKO5KTVklwjZFK9hIb21kE29d2BNGTdWR7cc4uj3P3KT4slGe983mgEMxEcckaO8CmU43qCtoc0SHFnBONep_8zqSDRtCreb1q1atW3fa6Br2aL7G3Ty8sdkfuOfRPdQHgCPi41_dxSVNZ-P8z_wLAL4-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701478487</pqid></control><display><type>article</type><title>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</title><source>Institute of Physics</source><creator>Nhan, Tam ; Burgess, Alison ; Lilge, Lothar ; Hynynen, Kullervo</creator><creatorcontrib>Nhan, Tam ; Burgess, Alison ; Lilge, Lothar ; Hynynen, Kullervo</creatorcontrib><description>Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/59/20/5987</identifier><identifier>PMID: 25230100</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Antineoplastic Agents - administration &amp; dosage ; Antineoplastic Agents - pharmacokinetics ; BBB opening ; Blood-Brain Barrier - metabolism ; Blood-Brain Barrier - radiation effects ; Capillary Permeability ; doxorubicin ; Doxorubicin - administration &amp; dosage ; Doxorubicin - pharmacokinetics ; Drug Delivery Systems - methods ; focused ultrasound ; Humans ; modeling ; Models, Biological ; Sonication - methods</subject><ispartof>Physics in medicine &amp; biology, 2014-10, Vol.59 (20), p.5987-6004</ispartof><rights>2014 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</citedby><cites>FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25230100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nhan, Tam</creatorcontrib><creatorcontrib>Burgess, Alison</creatorcontrib><creatorcontrib>Lilge, Lothar</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><title>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.</description><subject>Animals</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>BBB opening</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Blood-Brain Barrier - radiation effects</subject><subject>Capillary Permeability</subject><subject>doxorubicin</subject><subject>Doxorubicin - administration &amp; dosage</subject><subject>Doxorubicin - pharmacokinetics</subject><subject>Drug Delivery Systems - methods</subject><subject>focused ultrasound</subject><subject>Humans</subject><subject>modeling</subject><subject>Models, Biological</subject><subject>Sonication - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi1U1C6l_wAhH3sJOxMnjnOsWr6kIi5wtux4Ql15462dFJYDvx1HW3rk4pFHzzv2PIy9QXiHoNQWQGDVY9tu235bQzlV94JtUEisZCvhhG2ekTP2Kud7AERVN6fsrG5rAQiwYX--REfBTz94iIMJ_jc5vjYeKR14HPlN_BXTYv3gJz5HPt8Rt8mUyxhDiD_X4BiHJZfYEuZkclwmx2m6M9NQejbE6KpjwpqUPCW-p7QjY33w8-E1ezmakOniqZ6z7x_ef7v-VN1-_fj5-uq2GoTCuRLYqgap7keUwmH5uTHOysYKO5KTVklwjZFK9hIb21kE29d2BNGTdWR7cc4uj3P3KT4slGe983mgEMxEcckaO8CmU43qCtoc0SHFnBONep_8zqSDRtCreb1q1atW3fa6Br2aL7G3Ty8sdkfuOfRPdQHgCPi41_dxSVNZ-P8z_wLAL4-e</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Nhan, Tam</creator><creator>Burgess, Alison</creator><creator>Lilge, Lothar</creator><creator>Hynynen, Kullervo</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20141021</creationdate><title>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</title><author>Nhan, Tam ; Burgess, Alison ; Lilge, Lothar ; Hynynen, Kullervo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>BBB opening</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Blood-Brain Barrier - radiation effects</topic><topic>Capillary Permeability</topic><topic>doxorubicin</topic><topic>Doxorubicin - administration &amp; dosage</topic><topic>Doxorubicin - pharmacokinetics</topic><topic>Drug Delivery Systems - methods</topic><topic>focused ultrasound</topic><topic>Humans</topic><topic>modeling</topic><topic>Models, Biological</topic><topic>Sonication - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nhan, Tam</creatorcontrib><creatorcontrib>Burgess, Alison</creatorcontrib><creatorcontrib>Lilge, Lothar</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nhan, Tam</au><au>Burgess, Alison</au><au>Lilge, Lothar</au><au>Hynynen, Kullervo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>59</volume><issue>20</issue><spage>5987</spage><epage>6004</epage><pages>5987-6004</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min−1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25230100</pmid><doi>10.1088/0031-9155/59/20/5987</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2014-10, Vol.59 (20), p.5987-6004
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_1701478487
source Institute of Physics
subjects Animals
Antineoplastic Agents - administration & dosage
Antineoplastic Agents - pharmacokinetics
BBB opening
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - radiation effects
Capillary Permeability
doxorubicin
Doxorubicin - administration & dosage
Doxorubicin - pharmacokinetics
Drug Delivery Systems - methods
focused ultrasound
Humans
modeling
Models, Biological
Sonication - methods
title Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20localized%20delivery%20of%20Doxorubicin%20to%20the%20brain%20following%20focused%20ultrasound%20enhanced%20blood-brain%20barrier%20permeability&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Nhan,%20Tam&rft.date=2014-10-21&rft.volume=59&rft.issue=20&rft.spage=5987&rft.epage=6004&rft.pages=5987-6004&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/59/20/5987&rft_dat=%3Cproquest_iop_j%3E1701478487%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-315841e29f163d1100aadb64b3bfed6b860d4a6869614b7b10b92bf039ebdeb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1701478487&rft_id=info:pmid/25230100&rfr_iscdi=true