Loading…
The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model
Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a...
Saved in:
Published in: | Journal of climate 2015-07, Vol.28 (13), p.5351-5364 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033 |
container_end_page | 5364 |
container_issue | 13 |
container_start_page | 5351 |
container_title | Journal of climate |
container_volume | 28 |
creator | Xiang, Baoqiang Zhao, Ming Jiang, Xianan Lin, Shian-Jiann Li, Tim Fu, Xiouhua Vecchi, Gabriel |
description | Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction. |
doi_str_mv | 10.1175/jcli-d-15-0102.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701480111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26195202</jstor_id><sourcerecordid>26195202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgUQp7CxIllhYXO78J3HEhFJailoViSJGy3EckTRtStwObLwDb8iT0KqIgYHplt99d_oIOUfoIcbqunJ1yXKGigEC7-EB6aDiwEBKfkg6oBPJdKzUMTkJoQJAHgF0yM3s1VPx9fEp2Yv3czp5mNLH1uelW5fNkj7Ny7qm5ZJaOhz0xzRtNqva53TS5L4-JUeFrYM_-5ld8jy4m6X3bDwdjtLbMXMKkjVDHcegMp3JTAqbJYXmeSEhgiyzzqLlOs4TJ4W2UkhMfKG1Q4vC-thbB0J0ydU-d9U2bxsf1mZRBufr2i59swkGY0CpARG39PIPrZpNu9x-Z7hGSECgFv8pjBLFhYxUslWwV65tQmh9YVZtubDtu0Ewu87NQzoemb5BZXadm935i_1KFdZN--t5hNtU4OIbwzd6rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695234659</pqid></control><display><type>article</type><title>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Xiang, Baoqiang ; Zhao, Ming ; Jiang, Xianan ; Lin, Shian-Jiann ; Li, Tim ; Fu, Xiouhua ; Vecchi, Gabriel</creator><creatorcontrib>Xiang, Baoqiang ; Zhao, Ming ; Jiang, Xianan ; Lin, Shian-Jiann ; Li, Tim ; Fu, Xiouhua ; Vecchi, Gabriel</creatorcontrib><description>Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-15-0102.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric models ; Atmospherics ; Climate models ; Climatology ; Convection ; Correlation coefficient ; Correlation coefficients ; Experiments ; Fluid dynamics ; Forecasting models ; Geophysical fluids ; Hydrodynamics ; Initial conditions ; Madden-Julian oscillation ; Marine ; Meteorology ; Modeling ; Oceans ; Performance evaluation ; Predictions ; Propagation ; Seasonal variations ; Simulation ; Upper bounds ; Weather ; Weather forecasting</subject><ispartof>Journal of climate, 2015-07, Vol.28 (13), p.5351-5364</ispartof><rights>2015 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 1, 2015</rights><rights>Copyright American Meteorological Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</citedby><cites>FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26195202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26195202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Xiang, Baoqiang</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Jiang, Xianan</creatorcontrib><creatorcontrib>Lin, Shian-Jiann</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Fu, Xiouhua</creatorcontrib><creatorcontrib>Vecchi, Gabriel</creatorcontrib><title>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</title><title>Journal of climate</title><description>Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.</description><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Convection</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Forecasting models</subject><subject>Geophysical fluids</subject><subject>Hydrodynamics</subject><subject>Initial conditions</subject><subject>Madden-Julian oscillation</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Oceans</subject><subject>Performance evaluation</subject><subject>Predictions</subject><subject>Propagation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Upper bounds</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgUQp7CxIllhYXO78J3HEhFJailoViSJGy3EckTRtStwObLwDb8iT0KqIgYHplt99d_oIOUfoIcbqunJ1yXKGigEC7-EB6aDiwEBKfkg6oBPJdKzUMTkJoQJAHgF0yM3s1VPx9fEp2Yv3czp5mNLH1uelW5fNkj7Ny7qm5ZJaOhz0xzRtNqva53TS5L4-JUeFrYM_-5ld8jy4m6X3bDwdjtLbMXMKkjVDHcegMp3JTAqbJYXmeSEhgiyzzqLlOs4TJ4W2UkhMfKG1Q4vC-thbB0J0ydU-d9U2bxsf1mZRBufr2i59swkGY0CpARG39PIPrZpNu9x-Z7hGSECgFv8pjBLFhYxUslWwV65tQmh9YVZtubDtu0Ewu87NQzoemb5BZXadm935i_1KFdZN--t5hNtU4OIbwzd6rg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Xiang, Baoqiang</creator><creator>Zhao, Ming</creator><creator>Jiang, Xianan</creator><creator>Lin, Shian-Jiann</creator><creator>Li, Tim</creator><creator>Fu, Xiouhua</creator><creator>Vecchi, Gabriel</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150701</creationdate><title>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</title><author>Xiang, Baoqiang ; Zhao, Ming ; Jiang, Xianan ; Lin, Shian-Jiann ; Li, Tim ; Fu, Xiouhua ; Vecchi, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Convection</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Forecasting models</topic><topic>Geophysical fluids</topic><topic>Hydrodynamics</topic><topic>Initial conditions</topic><topic>Madden-Julian oscillation</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Oceans</topic><topic>Performance evaluation</topic><topic>Predictions</topic><topic>Propagation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Upper bounds</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Baoqiang</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Jiang, Xianan</creatorcontrib><creatorcontrib>Lin, Shian-Jiann</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Fu, Xiouhua</creatorcontrib><creatorcontrib>Vecchi, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Baoqiang</au><au>Zhao, Ming</au><au>Jiang, Xianan</au><au>Lin, Shian-Jiann</au><au>Li, Tim</au><au>Fu, Xiouhua</au><au>Vecchi, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</atitle><jtitle>Journal of climate</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>28</volume><issue>13</issue><spage>5351</spage><epage>5364</epage><pages>5351-5364</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-15-0102.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2015-07, Vol.28 (13), p.5351-5364 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701480111 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Atmospheric models Atmospherics Climate models Climatology Convection Correlation coefficient Correlation coefficients Experiments Fluid dynamics Forecasting models Geophysical fluids Hydrodynamics Initial conditions Madden-Julian oscillation Marine Meteorology Modeling Oceans Performance evaluation Predictions Propagation Seasonal variations Simulation Upper bounds Weather Weather forecasting |
title | The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%203%E2%80%934-Week%20MJO%20Prediction%20Skill%20in%20a%20GFDL%20Coupled%20Model&rft.jtitle=Journal%20of%20climate&rft.au=Xiang,%20Baoqiang&rft.date=2015-07-01&rft.volume=28&rft.issue=13&rft.spage=5351&rft.epage=5364&rft.pages=5351-5364&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-15-0102.1&rft_dat=%3Cjstor_proqu%3E26195202%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1695234659&rft_id=info:pmid/&rft_jstor_id=26195202&rfr_iscdi=true |