Loading…

The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model

Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2015-07, Vol.28 (13), p.5351-5364
Main Authors: Xiang, Baoqiang, Zhao, Ming, Jiang, Xianan, Lin, Shian-Jiann, Li, Tim, Fu, Xiouhua, Vecchi, Gabriel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033
cites cdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033
container_end_page 5364
container_issue 13
container_start_page 5351
container_title Journal of climate
container_volume 28
creator Xiang, Baoqiang
Zhao, Ming
Jiang, Xianan
Lin, Shian-Jiann
Li, Tim
Fu, Xiouhua
Vecchi, Gabriel
description Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.
doi_str_mv 10.1175/jcli-d-15-0102.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701480111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26195202</jstor_id><sourcerecordid>26195202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</originalsourceid><addsrcrecordid>eNp90L9OwzAQBnALgUQp7CxIllhYXO78J3HEhFJailoViSJGy3EckTRtStwObLwDb8iT0KqIgYHplt99d_oIOUfoIcbqunJ1yXKGigEC7-EB6aDiwEBKfkg6oBPJdKzUMTkJoQJAHgF0yM3s1VPx9fEp2Yv3czp5mNLH1uelW5fNkj7Ny7qm5ZJaOhz0xzRtNqva53TS5L4-JUeFrYM_-5ld8jy4m6X3bDwdjtLbMXMKkjVDHcegMp3JTAqbJYXmeSEhgiyzzqLlOs4TJ4W2UkhMfKG1Q4vC-thbB0J0ydU-d9U2bxsf1mZRBufr2i59swkGY0CpARG39PIPrZpNu9x-Z7hGSECgFv8pjBLFhYxUslWwV65tQmh9YVZtubDtu0Ewu87NQzoemb5BZXadm935i_1KFdZN--t5hNtU4OIbwzd6rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695234659</pqid></control><display><type>article</type><title>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Xiang, Baoqiang ; Zhao, Ming ; Jiang, Xianan ; Lin, Shian-Jiann ; Li, Tim ; Fu, Xiouhua ; Vecchi, Gabriel</creator><creatorcontrib>Xiang, Baoqiang ; Zhao, Ming ; Jiang, Xianan ; Lin, Shian-Jiann ; Li, Tim ; Fu, Xiouhua ; Vecchi, Gabriel</creatorcontrib><description>Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-15-0102.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmospheric models ; Atmospherics ; Climate models ; Climatology ; Convection ; Correlation coefficient ; Correlation coefficients ; Experiments ; Fluid dynamics ; Forecasting models ; Geophysical fluids ; Hydrodynamics ; Initial conditions ; Madden-Julian oscillation ; Marine ; Meteorology ; Modeling ; Oceans ; Performance evaluation ; Predictions ; Propagation ; Seasonal variations ; Simulation ; Upper bounds ; Weather ; Weather forecasting</subject><ispartof>Journal of climate, 2015-07, Vol.28 (13), p.5351-5364</ispartof><rights>2015 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 1, 2015</rights><rights>Copyright American Meteorological Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</citedby><cites>FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26195202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26195202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Xiang, Baoqiang</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Jiang, Xianan</creatorcontrib><creatorcontrib>Lin, Shian-Jiann</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Fu, Xiouhua</creatorcontrib><creatorcontrib>Vecchi, Gabriel</creatorcontrib><title>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</title><title>Journal of climate</title><description>Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.</description><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Convection</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Forecasting models</subject><subject>Geophysical fluids</subject><subject>Hydrodynamics</subject><subject>Initial conditions</subject><subject>Madden-Julian oscillation</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Oceans</subject><subject>Performance evaluation</subject><subject>Predictions</subject><subject>Propagation</subject><subject>Seasonal variations</subject><subject>Simulation</subject><subject>Upper bounds</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90L9OwzAQBnALgUQp7CxIllhYXO78J3HEhFJailoViSJGy3EckTRtStwObLwDb8iT0KqIgYHplt99d_oIOUfoIcbqunJ1yXKGigEC7-EB6aDiwEBKfkg6oBPJdKzUMTkJoQJAHgF0yM3s1VPx9fEp2Yv3czp5mNLH1uelW5fNkj7Ny7qm5ZJaOhz0xzRtNqva53TS5L4-JUeFrYM_-5ld8jy4m6X3bDwdjtLbMXMKkjVDHcegMp3JTAqbJYXmeSEhgiyzzqLlOs4TJ4W2UkhMfKG1Q4vC-thbB0J0ydU-d9U2bxsf1mZRBufr2i59swkGY0CpARG39PIPrZpNu9x-Z7hGSECgFv8pjBLFhYxUslWwV65tQmh9YVZtubDtu0Ewu87NQzoemb5BZXadm935i_1KFdZN--t5hNtU4OIbwzd6rg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Xiang, Baoqiang</creator><creator>Zhao, Ming</creator><creator>Jiang, Xianan</creator><creator>Lin, Shian-Jiann</creator><creator>Li, Tim</creator><creator>Fu, Xiouhua</creator><creator>Vecchi, Gabriel</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150701</creationdate><title>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</title><author>Xiang, Baoqiang ; Zhao, Ming ; Jiang, Xianan ; Lin, Shian-Jiann ; Li, Tim ; Fu, Xiouhua ; Vecchi, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Convection</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Forecasting models</topic><topic>Geophysical fluids</topic><topic>Hydrodynamics</topic><topic>Initial conditions</topic><topic>Madden-Julian oscillation</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Oceans</topic><topic>Performance evaluation</topic><topic>Predictions</topic><topic>Propagation</topic><topic>Seasonal variations</topic><topic>Simulation</topic><topic>Upper bounds</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Baoqiang</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Jiang, Xianan</creatorcontrib><creatorcontrib>Lin, Shian-Jiann</creatorcontrib><creatorcontrib>Li, Tim</creatorcontrib><creatorcontrib>Fu, Xiouhua</creatorcontrib><creatorcontrib>Vecchi, Gabriel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Baoqiang</au><au>Zhao, Ming</au><au>Jiang, Xianan</au><au>Lin, Shian-Jiann</au><au>Li, Tim</au><au>Fu, Xiouhua</au><au>Vecchi, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model</atitle><jtitle>Journal of climate</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>28</volume><issue>13</issue><spage>5351</spage><epage>5364</epage><pages>5351-5364</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Based on a new version of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled model, the Madden–Julian oscillation (MJO) prediction skill in boreal wintertime (November–April) is evaluated by analyzing 11 years (2003–13) of hindcast experiments. The initial conditions are obtained by applying a simple nudging technique toward observations. Using the real-time multivariate MJO (RMM) index as a predictand, it is demonstrated that the MJO prediction skill can reach out to 27 days before the anomaly correlation coefficient (ACC) decreases to 0.5. The MJO forecast skill also shows relatively larger contrasts between target strong and weak cases (32 versus 7 days) than between initially strong and weak cases (29 versus 24 days). Meanwhile, a strong dependence on target phases is found, as opposed to relative skill independence from different initial phases. The MJO prediction skill is also shown to be about 29 days during the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY) field campaign period. This model’s potential predictability, the upper bound of prediction skill, extends out to 42 days, revealing a considerable unutilized predictability and a great potential for improving current MJO prediction.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-15-0102.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2015-07, Vol.28 (13), p.5351-5364
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1701480111
source JSTOR Archival Journals and Primary Sources Collection
subjects Atmospheric models
Atmospherics
Climate models
Climatology
Convection
Correlation coefficient
Correlation coefficients
Experiments
Fluid dynamics
Forecasting models
Geophysical fluids
Hydrodynamics
Initial conditions
Madden-Julian oscillation
Marine
Meteorology
Modeling
Oceans
Performance evaluation
Predictions
Propagation
Seasonal variations
Simulation
Upper bounds
Weather
Weather forecasting
title The 3–4-Week MJO Prediction Skill in a GFDL Coupled Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%203%E2%80%934-Week%20MJO%20Prediction%20Skill%20in%20a%20GFDL%20Coupled%20Model&rft.jtitle=Journal%20of%20climate&rft.au=Xiang,%20Baoqiang&rft.date=2015-07-01&rft.volume=28&rft.issue=13&rft.spage=5351&rft.epage=5364&rft.pages=5351-5364&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-15-0102.1&rft_dat=%3Cjstor_proqu%3E26195202%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-187705b8b4b43ab9f82df4060bbaca1a287d9c438a43419ef88c1a13ae7eac033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1695234659&rft_id=info:pmid/&rft_jstor_id=26195202&rfr_iscdi=true