Loading…
Electron flux and microbial community in microbial fuel cells (open-circuit and closed-circuit modes) and fermentation
A closed-circuit microbial fuel cell (C-MFC) was operated to investigate the electron flux under fed-batch mode, and the results were compared to those of open-circuit MFC (O-MFC) and a fermentation reactor (F-reactor). The current was the largest electron sink (52.7 % of influent SCOD) in C-MFC, wh...
Saved in:
Published in: | Journal of industrial microbiology & biotechnology 2015-07, Vol.42 (7), p.979-983 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A closed-circuit microbial fuel cell (C-MFC) was operated to investigate the electron flux under fed-batch mode, and the results were compared to those of open-circuit MFC (O-MFC) and a fermentation reactor (F-reactor). The current was the largest electron sink (52.7 % of influent SCOD) in C-MFC, whereas biomass and methane gas were the most significant electron sinks in O-MFC and F-reactor. Interestingly, some of the unknown sink may have accumulated in the electrode of O-MFC. Principal component analysis based on gradient gel electrophoresis profiles showed that the microbial communities were significantly affected by the growth conditions and the presence of electrode, regardless of the circuit connection. Therefore, the electrode and circuit mode might help to control the amount of biomass and enhance the MFC performance. |
---|---|
ISSN: | 1367-5435 1476-5535 |
DOI: | 10.1007/s10295-015-1629-2 |