Loading…
Activation of glycosylasparaginase. Formation of active N-terminal threonine by intramolecular autoproteolysis
The activation mechanism of glycosylasparaginase of Flavobacterium meningosepticum has been analyzed by site-directed mutagenesis and activation of purified precursors in vitro. Mutation of Thr-152 to Ser or Cys leads to gene products that are not activated in vivo but are activated in vitro because...
Saved in:
Published in: | The Journal of biological chemistry 1996-01, Vol.271 (3), p.1732-1737 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The activation mechanism of glycosylasparaginase of Flavobacterium meningosepticum has been analyzed by site-directed mutagenesis and activation of purified precursors in vitro. Mutation of Thr-152 to Ser or Cys leads to gene products that are not activated in vivo but are activated in vitro because processing of the mutant precursors is inhibited by certain amino acids in the cell. Kinetic studies reveal that activation is an intramolecular autoproteolytic process. The involvement of His-150 and Thr/Ser/Cys-152 in activation suggests that autoproteolysis resembles proteolysis by serine/cysteine proteases. Multiple functions of the highly conserved active threonine residue are implicated. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.271.3.1732 |