Loading…
Insights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia
The geochemical features of the volatiles dissolved in artesian thermal waters discharged over three basins (Millungera, Galilee and Cooper basin) of the Australian Great Artesian Basin (GAB) consistently indicate the presence of fluids from multiple gas sources located in the crust (e.g. sediments,...
Saved in:
Published in: | Chemical geology 2014-06, Vol.378-379, p.75-88 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The geochemical features of the volatiles dissolved in artesian thermal waters discharged over three basins (Millungera, Galilee and Cooper basin) of the Australian Great Artesian Basin (GAB) consistently indicate the presence of fluids from multiple gas sources located in the crust (e.g. sediments, oil reservoirs, granites) as well as minor but detectable contributions of mantle/magma-derived fluids. The gases extracted from 19 water samples and analyzed for their chemical and isotopic composition exhibit amounts of CO2 up to about 340mlSTP/LH2O marked by a δ13CTDC (Total Dissolved Carbon) ranging from −16.9 to +0.18‰ vs PDB, while CH4 concentrations vary from 4.4×10−5 to 4.9mlSTP/LH2O. Helium contents were between 9 and >2800 times higher than equilibrium with Air Saturated Water (ASW), with a maximum value of 0.12mlSTP/LH2O. Helium isotopic composition was in the 0.02–0.21 Ra range (Ra = air-normalized 3He/4He ratio). The three investigated basins differ from each other in terms of both chemical composition and isotopic signatures of the dissolved gases whose origin is attributed to both mantle and crustal volatiles. Mantle He is present in the west-central and hottest part of the GAB despite no evidence of recent volcanism. We found that the partial pressure of helium, significantly higher in crustal fluids than in mantle-type volatiles, enhances the crustal He signature in the dissolved gases, thus masking the original mantle contribution. Neotectonic activity involving deep lithospheric structures and magma intrusions, highlighted by recent geophysical investigations, is considered to be the drivers of mantle/magmatic volatiles towards the surface. The results, although pertaining to artesian waters from a vast area of >542,000km2, provide new constraints on volatile injection, and show that fluids' geochemistry can provide additional and independent information on the geo-tectonic settings of the Great Artesian Basin and its geothermal potential.
•Artesian waters of the GAB carry crustal and mantle sourced CO2-dominated dissolved gases.•High crustal-helium partial pressure at depth masks mantle-type He in dissolved gases.•Mantle He is present in the west-central part of the GAB despite no evidence of young volcanism.•Mantle He degassing may be related to neotectonics in central Australia and deep litospheric faults. |
---|---|
ISSN: | 0009-2541 1872-6836 |
DOI: | 10.1016/j.chemgeo.2014.04.013 |