Loading…
Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1
Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, man...
Saved in:
Published in: | Applied microbiology and biotechnology 2015-06, Vol.99 (12), p.5109-5121 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3 |
container_end_page | 5121 |
container_issue | 12 |
container_start_page | 5109 |
container_title | Applied microbiology and biotechnology |
container_volume | 99 |
creator | Valverde-Tercedor, C Montalbán-López, M Perez-Gonzalez, T Sanchez-Quesada, M. S Prozorov, T Pineda-Molina, E Fernandez-Vivas, M. A Rodriguez-Navarro, A. B Trubitsyn, D Bazylinski, Dennis A Jimenez-Lopez, C |
description | Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals. |
doi_str_mv | 10.1007/s00253-014-6326-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701488446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435385480</galeid><sourcerecordid>A435385480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEokPhB7ABS2xgkeK3PctqxKNSR0gMXVt52MFVEg-2UxF-PXeaUjEIgSzZSu53rnx8T1E8J_iMYKzeJoypYCUmvJSMynJ-UKwIZ7TEkvCHxQoTJUol1vqkeJLSNcaEaikfFydUaMUFo6tiv_M_LGrCmGPoUXDIj-jGwwdK85i_2gTlFg1VN9rsM5BxTrnqE6pnBGW0rYYN2seQLQhBvr0lQxOaZkqgi36EM-VYQX27KcnT4pEDvX12d54WV-_ffdl8LC8_fbjYnF-WjWQqw62dFbZxbO2oxZrrthWt5BoLhznlTrq6xripFeZOkfW6FqRlel2TlteKS8tOi9dLX7jct8mmbAafGtv31WjDlAxR8Gxacy7_j0rNlFBUckBf_YFehymOYOSWYkwp2O-pruqt8aML4L85NDXnnAmmBRgB6uwvFKzWDh4mYp2H_0eCN0eCw9Ts99xVU0rmYvf5mCUL28SQUrTO7KOHccyGYHMIj1nCY-AVzCE8ZgbNiztzUz3Y9l7xKy0A0AVIUBo7G39z_4-uLxeRq4KpuuiTudpRTATEUcMACPsJhUvV3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683337783</pqid></control><display><type>article</type><title>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Valverde-Tercedor, C ; Montalbán-López, M ; Perez-Gonzalez, T ; Sanchez-Quesada, M. S ; Prozorov, T ; Pineda-Molina, E ; Fernandez-Vivas, M. A ; Rodriguez-Navarro, A. B ; Trubitsyn, D ; Bazylinski, Dennis A ; Jimenez-Lopez, C</creator><creatorcontrib>Valverde-Tercedor, C ; Montalbán-López, M ; Perez-Gonzalez, T ; Sanchez-Quesada, M. S ; Prozorov, T ; Pineda-Molina, E ; Fernandez-Vivas, M. A ; Rodriguez-Navarro, A. B ; Trubitsyn, D ; Bazylinski, Dennis A ; Jimenez-Lopez, C</creatorcontrib><description>Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-6326-y</identifier><identifier>PMID: 25874532</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Alphaproteobacteria - chemistry ; Alphaproteobacteria - genetics ; Alphaproteobacteria - metabolism ; Analysis ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; biomimetic synthesis ; Biomimetics ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Crystals ; Ferrosoferric Oxide - chemistry ; Ferrosoferric Oxide - metabolism ; Genes ; lactalbumin ; Life Sciences ; lysozyme ; Magnetism ; Magnetite ; Magnetococcus ; Magnetosomes - chemistry ; Magnetosomes - genetics ; Magnetosomes - metabolism ; Microbial Genetics and Genomics ; Microbiological synthesis ; Microbiology ; Mineralization ; Morphology ; myoglobin ; Myoglobins ; Nanocrystals ; Nanoparticles ; Particle Size ; Physiological aspects ; Production processes ; Prokaryotes ; prokaryotic cells ; Properties ; Proteins ; recombinant proteins ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2015-06, Vol.99 (12), p.5109-5121</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</citedby><cites>FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1683337783/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1683337783?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25874532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valverde-Tercedor, C</creatorcontrib><creatorcontrib>Montalbán-López, M</creatorcontrib><creatorcontrib>Perez-Gonzalez, T</creatorcontrib><creatorcontrib>Sanchez-Quesada, M. S</creatorcontrib><creatorcontrib>Prozorov, T</creatorcontrib><creatorcontrib>Pineda-Molina, E</creatorcontrib><creatorcontrib>Fernandez-Vivas, M. A</creatorcontrib><creatorcontrib>Rodriguez-Navarro, A. B</creatorcontrib><creatorcontrib>Trubitsyn, D</creatorcontrib><creatorcontrib>Bazylinski, Dennis A</creatorcontrib><creatorcontrib>Jimenez-Lopez, C</creatorcontrib><title>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.</description><subject>Alphaproteobacteria - chemistry</subject><subject>Alphaproteobacteria - genetics</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>biomimetic synthesis</subject><subject>Biomimetics</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Crystals</subject><subject>Ferrosoferric Oxide - chemistry</subject><subject>Ferrosoferric Oxide - metabolism</subject><subject>Genes</subject><subject>lactalbumin</subject><subject>Life Sciences</subject><subject>lysozyme</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetococcus</subject><subject>Magnetosomes - chemistry</subject><subject>Magnetosomes - genetics</subject><subject>Magnetosomes - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiological synthesis</subject><subject>Microbiology</subject><subject>Mineralization</subject><subject>Morphology</subject><subject>myoglobin</subject><subject>Myoglobins</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Physiological aspects</subject><subject>Production processes</subject><subject>Prokaryotes</subject><subject>prokaryotic cells</subject><subject>Properties</subject><subject>Proteins</subject><subject>recombinant proteins</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkktv1DAUhSMEokPhB7ABS2xgkeK3PctqxKNSR0gMXVt52MFVEg-2UxF-PXeaUjEIgSzZSu53rnx8T1E8J_iMYKzeJoypYCUmvJSMynJ-UKwIZ7TEkvCHxQoTJUol1vqkeJLSNcaEaikfFydUaMUFo6tiv_M_LGrCmGPoUXDIj-jGwwdK85i_2gTlFg1VN9rsM5BxTrnqE6pnBGW0rYYN2seQLQhBvr0lQxOaZkqgi36EM-VYQX27KcnT4pEDvX12d54WV-_ffdl8LC8_fbjYnF-WjWQqw62dFbZxbO2oxZrrthWt5BoLhznlTrq6xripFeZOkfW6FqRlel2TlteKS8tOi9dLX7jct8mmbAafGtv31WjDlAxR8Gxacy7_j0rNlFBUckBf_YFehymOYOSWYkwp2O-pruqt8aML4L85NDXnnAmmBRgB6uwvFKzWDh4mYp2H_0eCN0eCw9Ts99xVU0rmYvf5mCUL28SQUrTO7KOHccyGYHMIj1nCY-AVzCE8ZgbNiztzUz3Y9l7xKy0A0AVIUBo7G39z_4-uLxeRq4KpuuiTudpRTATEUcMACPsJhUvV3g</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Valverde-Tercedor, C</creator><creator>Montalbán-López, M</creator><creator>Perez-Gonzalez, T</creator><creator>Sanchez-Quesada, M. S</creator><creator>Prozorov, T</creator><creator>Pineda-Molina, E</creator><creator>Fernandez-Vivas, M. A</creator><creator>Rodriguez-Navarro, A. B</creator><creator>Trubitsyn, D</creator><creator>Bazylinski, Dennis A</creator><creator>Jimenez-Lopez, C</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20150601</creationdate><title>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</title><author>Valverde-Tercedor, C ; Montalbán-López, M ; Perez-Gonzalez, T ; Sanchez-Quesada, M. S ; Prozorov, T ; Pineda-Molina, E ; Fernandez-Vivas, M. A ; Rodriguez-Navarro, A. B ; Trubitsyn, D ; Bazylinski, Dennis A ; Jimenez-Lopez, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alphaproteobacteria - chemistry</topic><topic>Alphaproteobacteria - genetics</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>biomimetic synthesis</topic><topic>Biomimetics</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Crystals</topic><topic>Ferrosoferric Oxide - chemistry</topic><topic>Ferrosoferric Oxide - metabolism</topic><topic>Genes</topic><topic>lactalbumin</topic><topic>Life Sciences</topic><topic>lysozyme</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetococcus</topic><topic>Magnetosomes - chemistry</topic><topic>Magnetosomes - genetics</topic><topic>Magnetosomes - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiological synthesis</topic><topic>Microbiology</topic><topic>Mineralization</topic><topic>Morphology</topic><topic>myoglobin</topic><topic>Myoglobins</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Physiological aspects</topic><topic>Production processes</topic><topic>Prokaryotes</topic><topic>prokaryotic cells</topic><topic>Properties</topic><topic>Proteins</topic><topic>recombinant proteins</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valverde-Tercedor, C</creatorcontrib><creatorcontrib>Montalbán-López, M</creatorcontrib><creatorcontrib>Perez-Gonzalez, T</creatorcontrib><creatorcontrib>Sanchez-Quesada, M. S</creatorcontrib><creatorcontrib>Prozorov, T</creatorcontrib><creatorcontrib>Pineda-Molina, E</creatorcontrib><creatorcontrib>Fernandez-Vivas, M. A</creatorcontrib><creatorcontrib>Rodriguez-Navarro, A. B</creatorcontrib><creatorcontrib>Trubitsyn, D</creatorcontrib><creatorcontrib>Bazylinski, Dennis A</creatorcontrib><creatorcontrib>Jimenez-Lopez, C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valverde-Tercedor, C</au><au>Montalbán-López, M</au><au>Perez-Gonzalez, T</au><au>Sanchez-Quesada, M. S</au><au>Prozorov, T</au><au>Pineda-Molina, E</au><au>Fernandez-Vivas, M. A</au><au>Rodriguez-Navarro, A. B</au><au>Trubitsyn, D</au><au>Bazylinski, Dennis A</au><au>Jimenez-Lopez, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>99</volume><issue>12</issue><spage>5109</spage><epage>5121</epage><pages>5109-5121</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25874532</pmid><doi>10.1007/s00253-014-6326-y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2015-06, Vol.99 (12), p.5109-5121 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1701488446 |
source | ABI/INFORM Global; Springer Link |
subjects | Alphaproteobacteria - chemistry Alphaproteobacteria - genetics Alphaproteobacteria - metabolism Analysis Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biomedical and Life Sciences biomimetic synthesis Biomimetics Biotechnologically Relevant Enzymes and Proteins Biotechnology Crystals Ferrosoferric Oxide - chemistry Ferrosoferric Oxide - metabolism Genes lactalbumin Life Sciences lysozyme Magnetism Magnetite Magnetococcus Magnetosomes - chemistry Magnetosomes - genetics Magnetosomes - metabolism Microbial Genetics and Genomics Microbiological synthesis Microbiology Mineralization Morphology myoglobin Myoglobins Nanocrystals Nanoparticles Particle Size Physiological aspects Production processes Prokaryotes prokaryotic cells Properties Proteins recombinant proteins Studies |
title | Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20control%20of%20in%20vitro%20synthesized%20magnetite%20crystals%20by%20the%20MamC%20protein%20of%20Magnetococcus%20marinus%20strain%20MC-1&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Valverde-Tercedor,%20C&rft.date=2015-06-01&rft.volume=99&rft.issue=12&rft.spage=5109&rft.epage=5121&rft.pages=5109-5121&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-6326-y&rft_dat=%3Cgale_proqu%3EA435385480%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683337783&rft_id=info:pmid/25874532&rft_galeid=A435385480&rfr_iscdi=true |