Loading…

Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1

Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, man...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2015-06, Vol.99 (12), p.5109-5121
Main Authors: Valverde-Tercedor, C, Montalbán-López, M, Perez-Gonzalez, T, Sanchez-Quesada, M. S, Prozorov, T, Pineda-Molina, E, Fernandez-Vivas, M. A, Rodriguez-Navarro, A. B, Trubitsyn, D, Bazylinski, Dennis A, Jimenez-Lopez, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3
cites cdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3
container_end_page 5121
container_issue 12
container_start_page 5109
container_title Applied microbiology and biotechnology
container_volume 99
creator Valverde-Tercedor, C
Montalbán-López, M
Perez-Gonzalez, T
Sanchez-Quesada, M. S
Prozorov, T
Pineda-Molina, E
Fernandez-Vivas, M. A
Rodriguez-Navarro, A. B
Trubitsyn, D
Bazylinski, Dennis A
Jimenez-Lopez, C
description Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.
doi_str_mv 10.1007/s00253-014-6326-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1701488446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A435385480</galeid><sourcerecordid>A435385480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEokPhB7ABS2xgkeK3PctqxKNSR0gMXVt52MFVEg-2UxF-PXeaUjEIgSzZSu53rnx8T1E8J_iMYKzeJoypYCUmvJSMynJ-UKwIZ7TEkvCHxQoTJUol1vqkeJLSNcaEaikfFydUaMUFo6tiv_M_LGrCmGPoUXDIj-jGwwdK85i_2gTlFg1VN9rsM5BxTrnqE6pnBGW0rYYN2seQLQhBvr0lQxOaZkqgi36EM-VYQX27KcnT4pEDvX12d54WV-_ffdl8LC8_fbjYnF-WjWQqw62dFbZxbO2oxZrrthWt5BoLhznlTrq6xripFeZOkfW6FqRlel2TlteKS8tOi9dLX7jct8mmbAafGtv31WjDlAxR8Gxacy7_j0rNlFBUckBf_YFehymOYOSWYkwp2O-pruqt8aML4L85NDXnnAmmBRgB6uwvFKzWDh4mYp2H_0eCN0eCw9Ts99xVU0rmYvf5mCUL28SQUrTO7KOHccyGYHMIj1nCY-AVzCE8ZgbNiztzUz3Y9l7xKy0A0AVIUBo7G39z_4-uLxeRq4KpuuiTudpRTATEUcMACPsJhUvV3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683337783</pqid></control><display><type>article</type><title>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Valverde-Tercedor, C ; Montalbán-López, M ; Perez-Gonzalez, T ; Sanchez-Quesada, M. S ; Prozorov, T ; Pineda-Molina, E ; Fernandez-Vivas, M. A ; Rodriguez-Navarro, A. B ; Trubitsyn, D ; Bazylinski, Dennis A ; Jimenez-Lopez, C</creator><creatorcontrib>Valverde-Tercedor, C ; Montalbán-López, M ; Perez-Gonzalez, T ; Sanchez-Quesada, M. S ; Prozorov, T ; Pineda-Molina, E ; Fernandez-Vivas, M. A ; Rodriguez-Navarro, A. B ; Trubitsyn, D ; Bazylinski, Dennis A ; Jimenez-Lopez, C</creatorcontrib><description>Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-014-6326-y</identifier><identifier>PMID: 25874532</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Alphaproteobacteria - chemistry ; Alphaproteobacteria - genetics ; Alphaproteobacteria - metabolism ; Analysis ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biomedical and Life Sciences ; biomimetic synthesis ; Biomimetics ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Crystals ; Ferrosoferric Oxide - chemistry ; Ferrosoferric Oxide - metabolism ; Genes ; lactalbumin ; Life Sciences ; lysozyme ; Magnetism ; Magnetite ; Magnetococcus ; Magnetosomes - chemistry ; Magnetosomes - genetics ; Magnetosomes - metabolism ; Microbial Genetics and Genomics ; Microbiological synthesis ; Microbiology ; Mineralization ; Morphology ; myoglobin ; Myoglobins ; Nanocrystals ; Nanoparticles ; Particle Size ; Physiological aspects ; Production processes ; Prokaryotes ; prokaryotic cells ; Properties ; Proteins ; recombinant proteins ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2015-06, Vol.99 (12), p.5109-5121</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</citedby><cites>FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1683337783/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1683337783?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25874532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valverde-Tercedor, C</creatorcontrib><creatorcontrib>Montalbán-López, M</creatorcontrib><creatorcontrib>Perez-Gonzalez, T</creatorcontrib><creatorcontrib>Sanchez-Quesada, M. S</creatorcontrib><creatorcontrib>Prozorov, T</creatorcontrib><creatorcontrib>Pineda-Molina, E</creatorcontrib><creatorcontrib>Fernandez-Vivas, M. A</creatorcontrib><creatorcontrib>Rodriguez-Navarro, A. B</creatorcontrib><creatorcontrib>Trubitsyn, D</creatorcontrib><creatorcontrib>Bazylinski, Dennis A</creatorcontrib><creatorcontrib>Jimenez-Lopez, C</creatorcontrib><title>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.</description><subject>Alphaproteobacteria - chemistry</subject><subject>Alphaproteobacteria - genetics</subject><subject>Alphaproteobacteria - metabolism</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>biomimetic synthesis</subject><subject>Biomimetics</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Crystals</subject><subject>Ferrosoferric Oxide - chemistry</subject><subject>Ferrosoferric Oxide - metabolism</subject><subject>Genes</subject><subject>lactalbumin</subject><subject>Life Sciences</subject><subject>lysozyme</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetococcus</subject><subject>Magnetosomes - chemistry</subject><subject>Magnetosomes - genetics</subject><subject>Magnetosomes - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiological synthesis</subject><subject>Microbiology</subject><subject>Mineralization</subject><subject>Morphology</subject><subject>myoglobin</subject><subject>Myoglobins</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Particle Size</subject><subject>Physiological aspects</subject><subject>Production processes</subject><subject>Prokaryotes</subject><subject>prokaryotic cells</subject><subject>Properties</subject><subject>Proteins</subject><subject>recombinant proteins</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkktv1DAUhSMEokPhB7ABS2xgkeK3PctqxKNSR0gMXVt52MFVEg-2UxF-PXeaUjEIgSzZSu53rnx8T1E8J_iMYKzeJoypYCUmvJSMynJ-UKwIZ7TEkvCHxQoTJUol1vqkeJLSNcaEaikfFydUaMUFo6tiv_M_LGrCmGPoUXDIj-jGwwdK85i_2gTlFg1VN9rsM5BxTrnqE6pnBGW0rYYN2seQLQhBvr0lQxOaZkqgi36EM-VYQX27KcnT4pEDvX12d54WV-_ffdl8LC8_fbjYnF-WjWQqw62dFbZxbO2oxZrrthWt5BoLhznlTrq6xripFeZOkfW6FqRlel2TlteKS8tOi9dLX7jct8mmbAafGtv31WjDlAxR8Gxacy7_j0rNlFBUckBf_YFehymOYOSWYkwp2O-pruqt8aML4L85NDXnnAmmBRgB6uwvFKzWDh4mYp2H_0eCN0eCw9Ts99xVU0rmYvf5mCUL28SQUrTO7KOHccyGYHMIj1nCY-AVzCE8ZgbNiztzUz3Y9l7xKy0A0AVIUBo7G39z_4-uLxeRq4KpuuiTudpRTATEUcMACPsJhUvV3g</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Valverde-Tercedor, C</creator><creator>Montalbán-López, M</creator><creator>Perez-Gonzalez, T</creator><creator>Sanchez-Quesada, M. S</creator><creator>Prozorov, T</creator><creator>Pineda-Molina, E</creator><creator>Fernandez-Vivas, M. A</creator><creator>Rodriguez-Navarro, A. B</creator><creator>Trubitsyn, D</creator><creator>Bazylinski, Dennis A</creator><creator>Jimenez-Lopez, C</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20150601</creationdate><title>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</title><author>Valverde-Tercedor, C ; Montalbán-López, M ; Perez-Gonzalez, T ; Sanchez-Quesada, M. S ; Prozorov, T ; Pineda-Molina, E ; Fernandez-Vivas, M. A ; Rodriguez-Navarro, A. B ; Trubitsyn, D ; Bazylinski, Dennis A ; Jimenez-Lopez, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alphaproteobacteria - chemistry</topic><topic>Alphaproteobacteria - genetics</topic><topic>Alphaproteobacteria - metabolism</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>biomimetic synthesis</topic><topic>Biomimetics</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Crystals</topic><topic>Ferrosoferric Oxide - chemistry</topic><topic>Ferrosoferric Oxide - metabolism</topic><topic>Genes</topic><topic>lactalbumin</topic><topic>Life Sciences</topic><topic>lysozyme</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetococcus</topic><topic>Magnetosomes - chemistry</topic><topic>Magnetosomes - genetics</topic><topic>Magnetosomes - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiological synthesis</topic><topic>Microbiology</topic><topic>Mineralization</topic><topic>Morphology</topic><topic>myoglobin</topic><topic>Myoglobins</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Particle Size</topic><topic>Physiological aspects</topic><topic>Production processes</topic><topic>Prokaryotes</topic><topic>prokaryotic cells</topic><topic>Properties</topic><topic>Proteins</topic><topic>recombinant proteins</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valverde-Tercedor, C</creatorcontrib><creatorcontrib>Montalbán-López, M</creatorcontrib><creatorcontrib>Perez-Gonzalez, T</creatorcontrib><creatorcontrib>Sanchez-Quesada, M. S</creatorcontrib><creatorcontrib>Prozorov, T</creatorcontrib><creatorcontrib>Pineda-Molina, E</creatorcontrib><creatorcontrib>Fernandez-Vivas, M. A</creatorcontrib><creatorcontrib>Rodriguez-Navarro, A. B</creatorcontrib><creatorcontrib>Trubitsyn, D</creatorcontrib><creatorcontrib>Bazylinski, Dennis A</creatorcontrib><creatorcontrib>Jimenez-Lopez, C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valverde-Tercedor, C</au><au>Montalbán-López, M</au><au>Perez-Gonzalez, T</au><au>Sanchez-Quesada, M. S</au><au>Prozorov, T</au><au>Pineda-Molina, E</au><au>Fernandez-Vivas, M. A</au><au>Rodriguez-Navarro, A. B</au><au>Trubitsyn, D</au><au>Bazylinski, Dennis A</au><au>Jimenez-Lopez, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>99</volume><issue>12</issue><spage>5109</spage><epage>5121</epage><pages>5109-5121</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe₃O₄) or greigite (Fe₃S₄). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 °C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [α-lactalbumin (α-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10–60 μg/mL resulted in the production of larger and more well-developed magnetite crystals (~30–40 nm) compared to those of the control (~20–30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>25874532</pmid><doi>10.1007/s00253-014-6326-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2015-06, Vol.99 (12), p.5109-5121
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1701488446
source ABI/INFORM Global; Springer Link
subjects Alphaproteobacteria - chemistry
Alphaproteobacteria - genetics
Alphaproteobacteria - metabolism
Analysis
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biomedical and Life Sciences
biomimetic synthesis
Biomimetics
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Crystals
Ferrosoferric Oxide - chemistry
Ferrosoferric Oxide - metabolism
Genes
lactalbumin
Life Sciences
lysozyme
Magnetism
Magnetite
Magnetococcus
Magnetosomes - chemistry
Magnetosomes - genetics
Magnetosomes - metabolism
Microbial Genetics and Genomics
Microbiological synthesis
Microbiology
Mineralization
Morphology
myoglobin
Myoglobins
Nanocrystals
Nanoparticles
Particle Size
Physiological aspects
Production processes
Prokaryotes
prokaryotic cells
Properties
Proteins
recombinant proteins
Studies
title Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20control%20of%20in%20vitro%20synthesized%20magnetite%20crystals%20by%20the%20MamC%20protein%20of%20Magnetococcus%20marinus%20strain%20MC-1&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Valverde-Tercedor,%20C&rft.date=2015-06-01&rft.volume=99&rft.issue=12&rft.spage=5109&rft.epage=5121&rft.pages=5109-5121&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-014-6326-y&rft_dat=%3Cgale_proqu%3EA435385480%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c637t-75fe5ecf39f2e0848dd5d64805f0424f6fbb00cb704f7199b51d389b1d4b746e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683337783&rft_id=info:pmid/25874532&rft_galeid=A435385480&rfr_iscdi=true