Loading…
Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2)
2D semiconductors allow for unique and ultrasensitive devices to be fabricated for applications ranging from clinical diagnosis instruments to low-energy light-emitting diodes (LEDs). Graphene has championed research in this field since it was first fabricated; however, its zero bandgap creates many...
Saved in:
Published in: | Langmuir 2015-08, Vol.31 (30), p.8429-8435 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 2D semiconductors allow for unique and ultrasensitive devices to be fabricated for applications ranging from clinical diagnosis instruments to low-energy light-emitting diodes (LEDs). Graphene has championed research in this field since it was first fabricated; however, its zero bandgap creates many challenges. Transition metal dichalcogenides (TMDCs), e.g., MoS2, have a direct bandgap which alleviates the challenge of creating a bandgap in graphene-based devices. Water wettability of MoS2 is critical to device fabrication/performance and MoS2 has been believed to be hydrophobic. Herein, we report that water contact angle (WCA) of freshly exfoliated MoS2 shows temporal evolution with an intrinsic WCA of 69.0 ± 3.8° that increases to 89.0 ± 3.1° after 1 day exposure to ambient air. ATR-FTIR and ellipsometry show that the fresh, intrinsically mildly hydrophilic MoS2 surface adsorbs hydrocarbons from ambient air and thus becomes hydrophobic. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b02057 |