Loading…
Amino Acid Substitutions in the Herpes Simplex Virus Transactivator VP16 Uncouple Direct Protein-Protein Interaction and DNA Binding from Complex Assembly and Transactivation
The herpes simplex virus transactivator VP16 directs the assembly of a multicomponent protein-DNA complex that requires the participation of two cellular factors, the POU homeodomain protein Oct-1, which binds independently to response elements, and VCAF-1 (VP16 complex assembly factor; also called...
Saved in:
Published in: | The Journal of biological chemistry 1995-12, Vol.270 (48), p.29030-29037 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The herpes simplex virus transactivator VP16 directs the assembly of a multicomponent protein-DNA complex that requires the participation of two cellular factors, the POU homeodomain protein Oct-1, which binds independently to response elements, and VCAF-1 (VP16 complex assembly factor; also called HCF, C1), a factor that binds directly to VP16. A number of distinct properties of VP16 have been implicated in the assembly of the VP16-induced complex (VIC). These include its independent association with VCAF-1 and, under appropriate conditions, its ability to bind to DNA or to DNA-bound Oct-1 in the absence of VCAF-1. In order to probe the requirements of these individual interactions in the functional asembly of VIC, we mutated selected charged amino acids in two subdomains of VP16 previously shown to be important in protein-DNA complex formation. Purified VP16 proteins were analyzed for their ability to direct protein-DNA complex formation and to interact directly with VCAF-1. Several classes of mutants that were differentially compromised in VCAF-1 interaction, direct DNA binding, and/or association with DNA-bound Oct-1 were obtained. Interestingly, all of the derivatives were still capable of generating the VIC complex in vitro and activating transcription in vivo. Our findings indicate that the cooperative assembly of functional VP16-containing complexes can occur by pathways that do not necessarily require the prior interaction of VP16 with VCAF-1 or the ability of VP16 to bind directly to DNA or associate with DNA-bound Oct-1. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.270.48.29030 |