Loading…

A Conformational Intermediate between the Resting and Desensitized States of the Nicotinic Acetylcholine Receptor

The structural changes induced in the nicotinic acetylcholine receptor by two noncompetitive channel blockers, proadifen and phencyclidine, have been studied by infrared difference spectroscopy and using the conformationally sensitive photoreactive noncompetitive antagonist 3-(trifluoromethyl)-3-m-(...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-02, Vol.276 (7), p.4796-4803
Main Authors: Ryan, Stephen E., Blanton, Michael P., Baenziger, John E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structural changes induced in the nicotinic acetylcholine receptor by two noncompetitive channel blockers, proadifen and phencyclidine, have been studied by infrared difference spectroscopy and using the conformationally sensitive photoreactive noncompetitive antagonist 3-(trifluoromethyl)-3-m-([125I]iodophenyl)diazirine. Simultaneous binding of proadifen to both the ion channel pore and neurotransmitter sites leads to the loss of positive markers near 1663, 1655, 1547, 1430, and 1059 cm−1 in carbamylcholine difference spectra, suggesting the stabilization of a desensitized conformation. In contrast, only the positive markers near 1663 and 1059 cm−1 are maximally affected by the binding of either blocker to the ion channel pore suggesting that the conformationally sensitive residues vibrating at these two frequencies are stabilized in a desensitized-like conformation, whereas those vibrating near 1655 and 1430 cm−1 remain in a resting-like state. The vibrations at 1547 cm−1 are coupled to those at both 1663 and 1655 cm−1 and thus exhibit an intermediate pattern of band intensity change. The formation of a structural intermediate between the resting and desensitized states in the presence of phencyclidine is further supported by the pattern of 3-(trifluoromethyl)-3-m-([125I]iodophenyl)diazirine photoincorporation. In the presence of phencyclidine, the subunit labeling pattern is distinct from that observed in either the resting or desensitized conformations; specifically, there is a concentration-dependent increase in the extent of photoincorporation into the δ-subunit. Our data show that domains of the nicotinic acetylcholine receptor interconvert between the resting and desensitized states independently of each other and suggest a revised model of channel blocker action that involves both low and high affinity agonist binding conformational intermediates.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M007063200