Loading…

Modeling the Growth Kinetics of Anodic TiO2 Nanotubes

The fundamental understanding of the barrier layer (δb) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of δb in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scann...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2015-03, Vol.6 (5), p.845-851
Main Authors: Apolinário, A, Quitério, P, Sousa, C. T, Ventura, J, Sousa, J. B, Andrade, L, Mendes, A. M, Araújo, J. P
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 851
container_issue 5
container_start_page 845
container_title The journal of physical chemistry letters
container_volume 6
creator Apolinário, A
Quitério, P
Sousa, C. T
Ventura, J
Sousa, J. B
Andrade, L
Mendes, A. M
Araújo, J. P
description The fundamental understanding of the barrier layer (δb) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of δb in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that δb of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, δb(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between δb and the anodization time and potential can now be quantitatively understood.
doi_str_mv 10.1021/jz502380b
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1703719167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703719167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-dbf321dfec45ed827996767e943f32b46c70b08e0e1cd085e0daafbc6a10dd783</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRbK0e_AKSi-AlOptNdjfHUrSK1V7qedk_E5uQZms2QfTTm9IqMocZeD-G9x4hlxRuKST0rvrOIGESzBEZ0zyVsaAyO_53j8hZCBUAz0GKUzJK-G44HZPsxTusy-Y96tYYzVv_2a2j57LBrrQh8kU0bbwrbbQql0n0qhvf9QbDOTkpdB3w4rAn5O3hfjV7jBfL-dNsuog1A9bFzhQsoa5Am2boZCLynAsuME_ZIJiUWwEGJAJS60BmCE7rwliuKTgnJJuQm_3fbes_egyd2pTBYl3rBn0fFBXABM0pFwN6dUB7s0Gntm250e2X-o06ANd7QNugKt-3zeBcUVC7CtVfhewHXTpfVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703719167</pqid></control><display><type>article</type><title>Modeling the Growth Kinetics of Anodic TiO2 Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Apolinário, A ; Quitério, P ; Sousa, C. T ; Ventura, J ; Sousa, J. B ; Andrade, L ; Mendes, A. M ; Araújo, J. P</creator><creatorcontrib>Apolinário, A ; Quitério, P ; Sousa, C. T ; Ventura, J ; Sousa, J. B ; Andrade, L ; Mendes, A. M ; Araújo, J. P</creatorcontrib><description>The fundamental understanding of the barrier layer (δb) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of δb in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that δb of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, δb(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between δb and the anodization time and potential can now be quantitatively understood.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz502380b</identifier><identifier>PMID: 26262661</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2015-03, Vol.6 (5), p.845-851</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26262661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Apolinário, A</creatorcontrib><creatorcontrib>Quitério, P</creatorcontrib><creatorcontrib>Sousa, C. T</creatorcontrib><creatorcontrib>Ventura, J</creatorcontrib><creatorcontrib>Sousa, J. B</creatorcontrib><creatorcontrib>Andrade, L</creatorcontrib><creatorcontrib>Mendes, A. M</creatorcontrib><creatorcontrib>Araújo, J. P</creatorcontrib><title>Modeling the Growth Kinetics of Anodic TiO2 Nanotubes</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The fundamental understanding of the barrier layer (δb) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of δb in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that δb of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, δb(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between δb and the anodization time and potential can now be quantitatively understood.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRbK0e_AKSi-AlOptNdjfHUrSK1V7qedk_E5uQZms2QfTTm9IqMocZeD-G9x4hlxRuKST0rvrOIGESzBEZ0zyVsaAyO_53j8hZCBUAz0GKUzJK-G44HZPsxTusy-Y96tYYzVv_2a2j57LBrrQh8kU0bbwrbbQql0n0qhvf9QbDOTkpdB3w4rAn5O3hfjV7jBfL-dNsuog1A9bFzhQsoa5Am2boZCLynAsuME_ZIJiUWwEGJAJS60BmCE7rwliuKTgnJJuQm_3fbes_egyd2pTBYl3rBn0fFBXABM0pFwN6dUB7s0Gntm250e2X-o06ANd7QNugKt-3zeBcUVC7CtVfhewHXTpfVA</recordid><startdate>20150305</startdate><enddate>20150305</enddate><creator>Apolinário, A</creator><creator>Quitério, P</creator><creator>Sousa, C. T</creator><creator>Ventura, J</creator><creator>Sousa, J. B</creator><creator>Andrade, L</creator><creator>Mendes, A. M</creator><creator>Araújo, J. P</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150305</creationdate><title>Modeling the Growth Kinetics of Anodic TiO2 Nanotubes</title><author>Apolinário, A ; Quitério, P ; Sousa, C. T ; Ventura, J ; Sousa, J. B ; Andrade, L ; Mendes, A. M ; Araújo, J. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-dbf321dfec45ed827996767e943f32b46c70b08e0e1cd085e0daafbc6a10dd783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apolinário, A</creatorcontrib><creatorcontrib>Quitério, P</creatorcontrib><creatorcontrib>Sousa, C. T</creatorcontrib><creatorcontrib>Ventura, J</creatorcontrib><creatorcontrib>Sousa, J. B</creatorcontrib><creatorcontrib>Andrade, L</creatorcontrib><creatorcontrib>Mendes, A. M</creatorcontrib><creatorcontrib>Araújo, J. P</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apolinário, A</au><au>Quitério, P</au><au>Sousa, C. T</au><au>Ventura, J</au><au>Sousa, J. B</au><au>Andrade, L</au><au>Mendes, A. M</au><au>Araújo, J. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Growth Kinetics of Anodic TiO2 Nanotubes</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-03-05</date><risdate>2015</risdate><volume>6</volume><issue>5</issue><spage>845</spage><epage>851</epage><pages>845-851</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The fundamental understanding of the barrier layer (δb) growth in TiO2 nanotubes (NTs) is here established and compared with the classical metal oxidation theory from Mott and Cabrera. The role of δb in the anodization of TiO2 NTs under different applied potentials and times was analyzed using scanning transmission electron microscopy (STEM). Contrary to the well-known case of anodic aluminum oxide, we found that δb of TiO2 NTs progressively grows over time due to the nonsteady anodization regime. We then establish a relation between the phenomenological growth of the barrier layer with time and applied voltage, δb(V,t) using the high-field Mott and Cabrera conduction theory. The developed model was found to be in excellent agreement with the experimental data from both STEM and anodization curves. On the basis of these results, the relationship between δb and the anodization time and potential can now be quantitatively understood.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26262661</pmid><doi>10.1021/jz502380b</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2015-03, Vol.6 (5), p.845-851
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_1703719167
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Modeling the Growth Kinetics of Anodic TiO2 Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Growth%20Kinetics%20of%20Anodic%20TiO2%20Nanotubes&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Apolina%CC%81rio,%20A&rft.date=2015-03-05&rft.volume=6&rft.issue=5&rft.spage=845&rft.epage=851&rft.pages=845-851&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz502380b&rft_dat=%3Cproquest_pubme%3E1703719167%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a303t-dbf321dfec45ed827996767e943f32b46c70b08e0e1cd085e0daafbc6a10dd783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1703719167&rft_id=info:pmid/26262661&rfr_iscdi=true