Loading…

Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes

ω-Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new ω-conotoxins (CVIA–D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionati...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-11, Vol.275 (45), p.35335-35344
Main Authors: Lewis, Richard J., Nielsen, Katherine J., Craik, David J., Loughnan, Marion L., Adams, Denise A., Sharpe, Iain A., Luchian, Tudor, Adams, David J., Bond, Trudy, Thomas, Linda, Jones, Alun, Matheson, Jodi-Lea, Drinkwater, Roger, Andrews, Peter R., Alewood, Paul F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ω-Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new ω-conotoxins (CVIA–D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other ω-conotoxins, CVID has a novel loop 4 sequence and the highest selectivity for N-type over P/Q-type calcium channels in radioligand binding assays. CVIA−D also inhibited contractions of electrically stimulated rat vas deferens. In electrophysiological studies, ω-conotoxins CVID and MVIIA had similar potencies to inhibit current through central (α1B-d) and peripheral (α1B-b) splice variants of the rat N-type calcium channels when coexpressed with rat β3 in Xenopus oocytes. However, the potency of CVID and MVIIA increased when α1B-d and α1B-b were expressed in the absence of rat β3, an effect most pronounced for CVID at α1B-d (up to 540-fold) and least pronounced for MVIIA at α1B-d (3-fold). The novel selectivity of CVID may have therapeutic implications. 1H NMR studies reveal that CVID possesses a combination of unique structural features, including two hydrogen bonds that stabilize loop 2 and place loop 2 proximal to loop 4, creating a globular surface that is rigid and well defined.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M002252200