Loading…

Chromophores in Molecular Nanorings: When Is a Ring a Ring?

The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppres...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2014-12, Vol.5 (24), p.4356-4361
Main Authors: Parkinson, Patrick, Kondratuk, Dmitry V, Menelaou, Christopher, Gong, Juliane Q, Anderson, Harry L, Herz, Laura M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancement in the radiative rate for corresponding linear oligomers. Here we investigate such effects in linear and cyclic conjugated molecules containing between 6 and 42 butadiyne-linked porphyrin units (corresponding to 600 C–C bonds) as pure monodisperse oligomers. We demonstrate that as the diameter of the nanorings increases beyond ∼10 nm, its electronic properties tend toward those of a similarly sized linear molecule as a result of excitation localization on a subsegment of the ring. However, significant differences persist in the nature of the emitting dipole polarization even beyond this limit, arising from variations in molecular curvature and conformation.
ISSN:1948-7185
1948-7185
DOI:10.1021/jz5022153