Loading…
Observation of Universal Solidification in the Elongated Water Nanomeniscus
The ubiquitous capillary water bridge in nature plays an important role in interfacial phenomena under ambient conditions such as adhesion and friction. We present experimental measurements of the mechanical properties of the nanometric water column by using noncontact atomic force microscopy. We ob...
Saved in:
Published in: | The journal of physical chemistry letters 2014-02, Vol.5 (4), p.737-742 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ubiquitous capillary water bridge in nature plays an important role in interfacial phenomena under ambient conditions such as adhesion and friction. We present experimental measurements of the mechanical properties of the nanometric water column by using noncontact atomic force microscopy. We observe the universal behaviors that the relaxation time (RT) associated with the meniscus increases with its elongation and ruptures at the same value of RT, independent of the meniscus volume. In particular, the enhancement of RT between formation and rupture of the meniscus is indicative of the increased solid-like response, similar to that observed in nanoconfined water layers. Our results that the longer water column is more solid-like and less stable suggest (i) water at the vapor/liquid interface is more solid-like than that inside the meniscus and (ii) the associated smaller mobility of the interfacial water molecules is responsible for the structural stability of the water meniscus. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz402566a |