Loading…
Model-Based Iterative Reconstruction for Dual-Energy X-Ray CT Using a Joint Quadratic Likelihood Model
Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementatio...
Saved in:
Published in: | IEEE transactions on medical imaging 2014-01, Vol.33 (1), p.117-134 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2013.2282370 |