Loading…
Ultrafast Intersystem-Crossing Dynamics and Breakdown of the Kasha–Vavilov’s Rule of Naphthalenediimides
The fluorescence quantum yield of a red naphthalenediimide dye (rNDI) with amino and Br core substituents has been found to decrease by a factor of almost 2 by going from S1 ← S0 to S2 ← S0 excitation. Time-resolved spectroscopic measurements reveal that this deviation from the Kasha–Vavilov’s rule...
Saved in:
Published in: | The journal of physical chemistry letters 2015-06, Vol.6 (11), p.2096-2100 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fluorescence quantum yield of a red naphthalenediimide dye (rNDI) with amino and Br core substituents has been found to decrease by a factor of almost 2 by going from S1 ← S0 to S2 ← S0 excitation. Time-resolved spectroscopic measurements reveal that this deviation from the Kasha–Vavilov’s rule is due to an ultrafast, < 200 fs, intersystem-crossing (ISC) from the S2 state to the triplet manifold, due to the ππ* → nπ* character of the transition and to the presence of the heavy Br atom. In non-core substituted naphthalenediimide (pNDI), ISC is slower, ∼2 ps, and was found to be reversible on a time scale shorter than that of vibrational cooling. The fluorescence and triplet quantum yields of rNDI, thus, can be substantially changed by a simple variation of the excitation wavelength. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.5b00882 |