Loading…
Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes
Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to a...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-07, Vol.92 (1), p.012808-012808, Article 012808 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3 |
container_end_page | 012808 |
container_issue | 1 |
container_start_page | 012808 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 92 |
creator | Hertel, Stefan Andreas Wang, Xindi Hosking, Peter Simpson, M Cather Hunter, Mark Galvosas, Petrik |
description | Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores. |
doi_str_mv | 10.1103/PhysRevE.92.012808 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1704350650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1704350650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EolD4AxxQjlxS1q_YOaKqFKQiEIKz5dibNqh5YKdI_fektOW0c5gZzX6E3FCYUAr8_m21je_4M5vkbAKUadAn5IJKCSnjKjvdaZ6nXEk5IpcxfgFwxrU4JyOWMSUYyy7I_MUuG-wrlwaMbWMbh0nXBkyq2i6rZpm0ZdK0TdzWNfahckldudBG13aD_jPGle0wXpGz0q4jXh_umHw-zj6mT-nidf48fVikjgPvUwGFLrxXvBROaS298KVET32WuxyEKhxYYRkrhnEFUiWtpgy8LrVEKhjyMbnb93ah_d5g7E1dRYfrtW2w3URDFQguIZMwWNneuhscA5amC8NXYWsomB1AcwRocmb2AIfQ7aF_U9To_yNHYvwXPdluXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704350650</pqid></control><display><type>article</type><title>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Hertel, Stefan Andreas ; Wang, Xindi ; Hosking, Peter ; Simpson, M Cather ; Hunter, Mark ; Galvosas, Petrik</creator><creatorcontrib>Hertel, Stefan Andreas ; Wang, Xindi ; Hosking, Peter ; Simpson, M Cather ; Hunter, Mark ; Galvosas, Petrik</creatorcontrib><description>Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.012808</identifier><identifier>PMID: 26274226</identifier><language>eng</language><publisher>United States</publisher><subject>Calibration ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Models, Theoretical ; Porosity</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-07, Vol.92 (1), p.012808-012808, Article 012808</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</citedby><cites>FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26274226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hertel, Stefan Andreas</creatorcontrib><creatorcontrib>Wang, Xindi</creatorcontrib><creatorcontrib>Hosking, Peter</creatorcontrib><creatorcontrib>Simpson, M Cather</creatorcontrib><creatorcontrib>Hunter, Mark</creatorcontrib><creatorcontrib>Galvosas, Petrik</creatorcontrib><title>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.</description><subject>Calibration</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Theoretical</subject><subject>Porosity</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EolD4AxxQjlxS1q_YOaKqFKQiEIKz5dibNqh5YKdI_fektOW0c5gZzX6E3FCYUAr8_m21je_4M5vkbAKUadAn5IJKCSnjKjvdaZ6nXEk5IpcxfgFwxrU4JyOWMSUYyy7I_MUuG-wrlwaMbWMbh0nXBkyq2i6rZpm0ZdK0TdzWNfahckldudBG13aD_jPGle0wXpGz0q4jXh_umHw-zj6mT-nidf48fVikjgPvUwGFLrxXvBROaS298KVET32WuxyEKhxYYRkrhnEFUiWtpgy8LrVEKhjyMbnb93ah_d5g7E1dRYfrtW2w3URDFQguIZMwWNneuhscA5amC8NXYWsomB1AcwRocmb2AIfQ7aF_U9To_yNHYvwXPdluXA</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Hertel, Stefan Andreas</creator><creator>Wang, Xindi</creator><creator>Hosking, Peter</creator><creator>Simpson, M Cather</creator><creator>Hunter, Mark</creator><creator>Galvosas, Petrik</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201507</creationdate><title>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</title><author>Hertel, Stefan Andreas ; Wang, Xindi ; Hosking, Peter ; Simpson, M Cather ; Hunter, Mark ; Galvosas, Petrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Theoretical</topic><topic>Porosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hertel, Stefan Andreas</creatorcontrib><creatorcontrib>Wang, Xindi</creatorcontrib><creatorcontrib>Hosking, Peter</creatorcontrib><creatorcontrib>Simpson, M Cather</creatorcontrib><creatorcontrib>Hunter, Mark</creatorcontrib><creatorcontrib>Galvosas, Petrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertel, Stefan Andreas</au><au>Wang, Xindi</au><au>Hosking, Peter</au><au>Simpson, M Cather</au><au>Hunter, Mark</au><au>Galvosas, Petrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-07</date><risdate>2015</risdate><volume>92</volume><issue>1</issue><spage>012808</spage><epage>012808</epage><pages>012808-012808</pages><artnum>012808</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.</abstract><cop>United States</cop><pmid>26274226</pmid><doi>10.1103/PhysRevE.92.012808</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-07, Vol.92 (1), p.012808-012808, Article 012808 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1704350650 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Calibration Magnetic Resonance Imaging - instrumentation Magnetic Resonance Imaging - methods Models, Theoretical Porosity |
title | Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic-resonance%20pore%20imaging%20of%20nonsymmetric%20microscopic%20pore%20shapes&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Hertel,%20Stefan%20Andreas&rft.date=2015-07&rft.volume=92&rft.issue=1&rft.spage=012808&rft.epage=012808&rft.pages=012808-012808&rft.artnum=012808&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.012808&rft_dat=%3Cproquest_cross%3E1704350650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1704350650&rft_id=info:pmid/26274226&rfr_iscdi=true |