Loading…

Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-07, Vol.92 (1), p.012808-012808, Article 012808
Main Authors: Hertel, Stefan Andreas, Wang, Xindi, Hosking, Peter, Simpson, M Cather, Hunter, Mark, Galvosas, Petrik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3
cites cdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3
container_end_page 012808
container_issue 1
container_start_page 012808
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 92
creator Hertel, Stefan Andreas
Wang, Xindi
Hosking, Peter
Simpson, M Cather
Hunter, Mark
Galvosas, Petrik
description Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.
doi_str_mv 10.1103/PhysRevE.92.012808
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1704350650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1704350650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EolD4AxxQjlxS1q_YOaKqFKQiEIKz5dibNqh5YKdI_fektOW0c5gZzX6E3FCYUAr8_m21je_4M5vkbAKUadAn5IJKCSnjKjvdaZ6nXEk5IpcxfgFwxrU4JyOWMSUYyy7I_MUuG-wrlwaMbWMbh0nXBkyq2i6rZpm0ZdK0TdzWNfahckldudBG13aD_jPGle0wXpGz0q4jXh_umHw-zj6mT-nidf48fVikjgPvUwGFLrxXvBROaS298KVET32WuxyEKhxYYRkrhnEFUiWtpgy8LrVEKhjyMbnb93ah_d5g7E1dRYfrtW2w3URDFQguIZMwWNneuhscA5amC8NXYWsomB1AcwRocmb2AIfQ7aF_U9To_yNHYvwXPdluXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704350650</pqid></control><display><type>article</type><title>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Hertel, Stefan Andreas ; Wang, Xindi ; Hosking, Peter ; Simpson, M Cather ; Hunter, Mark ; Galvosas, Petrik</creator><creatorcontrib>Hertel, Stefan Andreas ; Wang, Xindi ; Hosking, Peter ; Simpson, M Cather ; Hunter, Mark ; Galvosas, Petrik</creatorcontrib><description>Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.012808</identifier><identifier>PMID: 26274226</identifier><language>eng</language><publisher>United States</publisher><subject>Calibration ; Magnetic Resonance Imaging - instrumentation ; Magnetic Resonance Imaging - methods ; Models, Theoretical ; Porosity</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-07, Vol.92 (1), p.012808-012808, Article 012808</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</citedby><cites>FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26274226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hertel, Stefan Andreas</creatorcontrib><creatorcontrib>Wang, Xindi</creatorcontrib><creatorcontrib>Hosking, Peter</creatorcontrib><creatorcontrib>Simpson, M Cather</creatorcontrib><creatorcontrib>Hunter, Mark</creatorcontrib><creatorcontrib>Galvosas, Petrik</creatorcontrib><title>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.</description><subject>Calibration</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Theoretical</subject><subject>Porosity</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EolD4AxxQjlxS1q_YOaKqFKQiEIKz5dibNqh5YKdI_fektOW0c5gZzX6E3FCYUAr8_m21je_4M5vkbAKUadAn5IJKCSnjKjvdaZ6nXEk5IpcxfgFwxrU4JyOWMSUYyy7I_MUuG-wrlwaMbWMbh0nXBkyq2i6rZpm0ZdK0TdzWNfahckldudBG13aD_jPGle0wXpGz0q4jXh_umHw-zj6mT-nidf48fVikjgPvUwGFLrxXvBROaS298KVET32WuxyEKhxYYRkrhnEFUiWtpgy8LrVEKhjyMbnb93ah_d5g7E1dRYfrtW2w3URDFQguIZMwWNneuhscA5amC8NXYWsomB1AcwRocmb2AIfQ7aF_U9To_yNHYvwXPdluXA</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Hertel, Stefan Andreas</creator><creator>Wang, Xindi</creator><creator>Hosking, Peter</creator><creator>Simpson, M Cather</creator><creator>Hunter, Mark</creator><creator>Galvosas, Petrik</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201507</creationdate><title>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</title><author>Hertel, Stefan Andreas ; Wang, Xindi ; Hosking, Peter ; Simpson, M Cather ; Hunter, Mark ; Galvosas, Petrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Theoretical</topic><topic>Porosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Hertel, Stefan Andreas</creatorcontrib><creatorcontrib>Wang, Xindi</creatorcontrib><creatorcontrib>Hosking, Peter</creatorcontrib><creatorcontrib>Simpson, M Cather</creatorcontrib><creatorcontrib>Hunter, Mark</creatorcontrib><creatorcontrib>Galvosas, Petrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertel, Stefan Andreas</au><au>Wang, Xindi</au><au>Hosking, Peter</au><au>Simpson, M Cather</au><au>Hunter, Mark</au><au>Galvosas, Petrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-07</date><risdate>2015</risdate><volume>92</volume><issue>1</issue><spage>012808</spage><epage>012808</epage><pages>012808-012808</pages><artnum>012808</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.</abstract><cop>United States</cop><pmid>26274226</pmid><doi>10.1103/PhysRevE.92.012808</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-07, Vol.92 (1), p.012808-012808, Article 012808
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1704350650
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Calibration
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
Models, Theoretical
Porosity
title Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic-resonance%20pore%20imaging%20of%20nonsymmetric%20microscopic%20pore%20shapes&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Hertel,%20Stefan%20Andreas&rft.date=2015-07&rft.volume=92&rft.issue=1&rft.spage=012808&rft.epage=012808&rft.pages=012808-012808&rft.artnum=012808&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.012808&rft_dat=%3Cproquest_cross%3E1704350650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-40b8bdd73f4c7885d4df5ed1d69c9047bc0a4a22b226be175a8120d8f85e142e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1704350650&rft_id=info:pmid/26274226&rfr_iscdi=true