Loading…

Development of a real-time immuno-PCR assay for the quantification of 17β-estradiol in water

A competitive real-time (RT) immuno-polymerase chain reaction (iPCR) (RT-iPCR) assay was developed for the sensitive quantification of 17β-estradiol in water. Using a universal iPCR method and polyclonal antibodies, 17β-estradiol was accurately quantified at concentrations ranging from 1 pg mL −1 to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental science and health. Part B, Pesticides, food contaminants, and agricultural wastes Pesticides, food contaminants, and agricultural wastes, 2015-10, Vol.50 (10), p.683-690
Main Authors: Gaudet, Daniel, Nilsson, Denise, Lohr, Tanner, Sheedy, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A competitive real-time (RT) immuno-polymerase chain reaction (iPCR) (RT-iPCR) assay was developed for the sensitive quantification of 17β-estradiol in water. Using a universal iPCR method and polyclonal antibodies, 17β-estradiol was accurately quantified at concentrations ranging from 1 pg mL −1 to 10 µg mL −1 . The RT-iPCR assay's limit of detection was 0.7 pg mL −1 . The RT-iPCR assay provided an 800-fold increase in sensitivity as well as an expanded working range compared with the corresponding enzyme-linked immunosorbent assay. Assay cross-reactivity to estrone and estriol, two structurally related estrogens, was below 8%. Water samples spiked with 17β-estradiol were analyzed by RT-iPCR to determine the assay's potential as a rapid screen for the monitoring of manure-borne estrogens in the environment. The assay showed recoveries of 82, 102 and 103% for Milli-Q, tap, and irrigation water, respectively, without requiring sample extraction or concentration prior to analysis.
ISSN:0360-1234
1532-4109
DOI:10.1080/03601234.2015.1048097