Loading…

Mechanical support of the pressure overloaded right ventricle: an acute feasibility study comparing low and high flow support

The objectives of this study were to assess the feasibility of low flow right ventricular support and to describe the hemodynamic effects of low versus high flow support in an animal model of acute right ventricular pressure overload. A Synergy Pocket Micro-pump (HeartWare International, Framingham,...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Heart and circulatory physiology 2015-08, Vol.309 (4), p.H615-H624
Main Authors: Verbelen, Tom, Verhoeven, Jelle, Goda, Motohiko, Burkhoff, Daniel, Delcroix, Marion, Rega, Filip, Meyns, Bart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objectives of this study were to assess the feasibility of low flow right ventricular support and to describe the hemodynamic effects of low versus high flow support in an animal model of acute right ventricular pressure overload. A Synergy Pocket Micro-pump (HeartWare International, Framingham, MA) was implanted in seven sheep. Blood was withdrawn from the right atrium to the pulmonary artery. Hemodynamics and pressure-volume loops were recorded in baseline conditions, after banding the pulmonary artery, and after ligating the right coronary artery in these banded sheep. End-organ perfusion (reflected by total cardiac output and arterial blood pressure) improved in all conditions. Intrinsic right ventricular contractility was not significantly impacted by support. Diastolic unloading of the pressure overloaded right ventricle (reflected by decreases in central venous pressure, end-diastolic pressure and volume, and ventricular capacitance) was successful, but with a concomitant and flow-dependent increase of the systolic afterload. This unloading diminished with right ventricular ischemia. Right ventricular mechanical support improves arterial blood pressure and cardiac output. It provides diastolic unloading of the right ventricle, but with a concomitant and right ventricular assist device flow-dependent increase of systolic afterload. These effects are most distinct in the pressure overloaded right ventricle without profound ischemic damage. We advocate the low flow strategy, which is potentially beneficial for the afterload sensitive right ventricle and has the advantage of avoiding excessive increases in pulmonary artery pressure when pulmonary hypertension exists. This might protect against the development of pulmonary edema and hemorrhage.
ISSN:0363-6135
1522-1539
DOI:10.1152/ajpheart.00246.2015