Loading…

Predicting quantitative variation within rice germplasm using molecular markers

Diverse Asian rice ( Oryza sativa ) germplasm has been used to identify associations between various quantitative traits and RAPD molecular markers using multiple regression analysis. This has allowed us to predict for other samples of germplasm their performance for traits such as culm length and n...

Full description

Saved in:
Bibliographic Details
Published in:Heredity 1996-03, Vol.76 (3), p.296-304
Main Authors: Virk, Parminder S, Ford-Lloyd, Brian V, Jackson, Michael T, Pooni, Harpal S, Clemeno, Tomas P, Newbury, H John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443
cites cdi_FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443
container_end_page 304
container_issue 3
container_start_page 296
container_title Heredity
container_volume 76
creator Virk, Parminder S
Ford-Lloyd, Brian V
Jackson, Michael T
Pooni, Harpal S
Clemeno, Tomas P
Newbury, H John
description Diverse Asian rice ( Oryza sativa ) germplasm has been used to identify associations between various quantitative traits and RAPD molecular markers using multiple regression analysis. This has allowed us to predict for other samples of germplasm their performance for traits such as culm length and number, days to flowering, grain width, and panicle and leaf length using only RAPD marker data. Such predictive capability is possible because of the availability of extensive diversity held in genebanks, and can be used in the future to facilitate the exploitation of that biodiversity. More specifically the methodology could facilitate crop improvement by rapid ideotype prediction. For the mapping and isolation of QTLs (genes controlling quantitative traits) the method would provide information to guide the selection of parental material for hybridization and markers expected to show linkage to QTLs. It may also be possible that these associations could lead the way towards marker-assisted selection during breeding programs. In the future, this demonstration of association between markers and easily measured traits could also be extended to the study of important adaptive traits, such as stress tolerance, found either within germplasm collections or in natural populations.
doi_str_mv 10.1038/hdy.1996.43
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17048992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17048992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443</originalsourceid><addsrcrecordid>eNp10E1PwyAYB3BiNHFOT34AezBetPMB-sbRLL4lS-ZBE2-EUroxW7oBndm3l2bLbp4g4ff8gT9C1xgmGGjxuKx2E8xYNknoCRphmqUxSRM4RSMAXMSQ5d_n6MK5FQDQnLARmn9YVWnptVlEm14Yr73wequirbA67DoT_Wq_1CayWqpooWy7boRro94NI23XKNk3wkatsD_Kukt0VovGqavDOkZfL8-f07d4Nn99nz7NYkkL5uNSgsxTVmUKRF2qvCSVLCUrBJQERIbLVChWEUwUxnWR50lRppTKKmOMEJwkdIzu9rlr22165TxvtZOqaYRRXe84ziEpAg7wfg-l7ZyzquZrq8NjdxwDH0rjoTQ-lMYTGvTtIVY4KZraCiO1O45QAJKkw-0Pe-bCiQml8FXXWxM-_E_qzZ4b4XurjnHBDCSIPzvTh_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17048992</pqid></control><display><type>article</type><title>Predicting quantitative variation within rice germplasm using molecular markers</title><source>Nature</source><creator>Virk, Parminder S ; Ford-Lloyd, Brian V ; Jackson, Michael T ; Pooni, Harpal S ; Clemeno, Tomas P ; Newbury, H John</creator><creatorcontrib>Virk, Parminder S ; Ford-Lloyd, Brian V ; Jackson, Michael T ; Pooni, Harpal S ; Clemeno, Tomas P ; Newbury, H John</creatorcontrib><description>Diverse Asian rice ( Oryza sativa ) germplasm has been used to identify associations between various quantitative traits and RAPD molecular markers using multiple regression analysis. This has allowed us to predict for other samples of germplasm their performance for traits such as culm length and number, days to flowering, grain width, and panicle and leaf length using only RAPD marker data. Such predictive capability is possible because of the availability of extensive diversity held in genebanks, and can be used in the future to facilitate the exploitation of that biodiversity. More specifically the methodology could facilitate crop improvement by rapid ideotype prediction. For the mapping and isolation of QTLs (genes controlling quantitative traits) the method would provide information to guide the selection of parental material for hybridization and markers expected to show linkage to QTLs. It may also be possible that these associations could lead the way towards marker-assisted selection during breeding programs. In the future, this demonstration of association between markers and easily measured traits could also be extended to the study of important adaptive traits, such as stress tolerance, found either within germplasm collections or in natural populations.</description><identifier>ISSN: 0018-067X</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/hdy.1996.43</identifier><identifier>CODEN: HDTYAT</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Classical genetics, quantitative genetics, hybrids ; Cytogenetics ; Ecology ; Evolutionary Biology ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Human Genetics ; original-article ; Oryza sativa ; Plant Genetics and Genomics ; Pteridophyta, spermatophyta ; Vegetals</subject><ispartof>Heredity, 1996-03, Vol.76 (3), p.296-304</ispartof><rights>The Genetical Society of Great Britain 1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443</citedby><cites>FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3002454$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Virk, Parminder S</creatorcontrib><creatorcontrib>Ford-Lloyd, Brian V</creatorcontrib><creatorcontrib>Jackson, Michael T</creatorcontrib><creatorcontrib>Pooni, Harpal S</creatorcontrib><creatorcontrib>Clemeno, Tomas P</creatorcontrib><creatorcontrib>Newbury, H John</creatorcontrib><title>Predicting quantitative variation within rice germplasm using molecular markers</title><title>Heredity</title><addtitle>Heredity</addtitle><description>Diverse Asian rice ( Oryza sativa ) germplasm has been used to identify associations between various quantitative traits and RAPD molecular markers using multiple regression analysis. This has allowed us to predict for other samples of germplasm their performance for traits such as culm length and number, days to flowering, grain width, and panicle and leaf length using only RAPD marker data. Such predictive capability is possible because of the availability of extensive diversity held in genebanks, and can be used in the future to facilitate the exploitation of that biodiversity. More specifically the methodology could facilitate crop improvement by rapid ideotype prediction. For the mapping and isolation of QTLs (genes controlling quantitative traits) the method would provide information to guide the selection of parental material for hybridization and markers expected to show linkage to QTLs. It may also be possible that these associations could lead the way towards marker-assisted selection during breeding programs. In the future, this demonstration of association between markers and easily measured traits could also be extended to the study of important adaptive traits, such as stress tolerance, found either within germplasm collections or in natural populations.</description><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Cytogenetics</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Human Genetics</subject><subject>original-article</subject><subject>Oryza sativa</subject><subject>Plant Genetics and Genomics</subject><subject>Pteridophyta, spermatophyta</subject><subject>Vegetals</subject><issn>0018-067X</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp10E1PwyAYB3BiNHFOT34AezBetPMB-sbRLL4lS-ZBE2-EUroxW7oBndm3l2bLbp4g4ff8gT9C1xgmGGjxuKx2E8xYNknoCRphmqUxSRM4RSMAXMSQ5d_n6MK5FQDQnLARmn9YVWnptVlEm14Yr73wequirbA67DoT_Wq_1CayWqpooWy7boRro94NI23XKNk3wkatsD_Kukt0VovGqavDOkZfL8-f07d4Nn99nz7NYkkL5uNSgsxTVmUKRF2qvCSVLCUrBJQERIbLVChWEUwUxnWR50lRppTKKmOMEJwkdIzu9rlr22165TxvtZOqaYRRXe84ziEpAg7wfg-l7ZyzquZrq8NjdxwDH0rjoTQ-lMYTGvTtIVY4KZraCiO1O45QAJKkw-0Pe-bCiQml8FXXWxM-_E_qzZ4b4XurjnHBDCSIPzvTh_g</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Virk, Parminder S</creator><creator>Ford-Lloyd, Brian V</creator><creator>Jackson, Michael T</creator><creator>Pooni, Harpal S</creator><creator>Clemeno, Tomas P</creator><creator>Newbury, H John</creator><general>Springer International Publishing</general><general>Nature Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>19960301</creationdate><title>Predicting quantitative variation within rice germplasm using molecular markers</title><author>Virk, Parminder S ; Ford-Lloyd, Brian V ; Jackson, Michael T ; Pooni, Harpal S ; Clemeno, Tomas P ; Newbury, H John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Cytogenetics</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Human Genetics</topic><topic>original-article</topic><topic>Oryza sativa</topic><topic>Plant Genetics and Genomics</topic><topic>Pteridophyta, spermatophyta</topic><topic>Vegetals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virk, Parminder S</creatorcontrib><creatorcontrib>Ford-Lloyd, Brian V</creatorcontrib><creatorcontrib>Jackson, Michael T</creatorcontrib><creatorcontrib>Pooni, Harpal S</creatorcontrib><creatorcontrib>Clemeno, Tomas P</creatorcontrib><creatorcontrib>Newbury, H John</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virk, Parminder S</au><au>Ford-Lloyd, Brian V</au><au>Jackson, Michael T</au><au>Pooni, Harpal S</au><au>Clemeno, Tomas P</au><au>Newbury, H John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting quantitative variation within rice germplasm using molecular markers</atitle><jtitle>Heredity</jtitle><stitle>Heredity</stitle><date>1996-03-01</date><risdate>1996</risdate><volume>76</volume><issue>3</issue><spage>296</spage><epage>304</epage><pages>296-304</pages><issn>0018-067X</issn><eissn>1365-2540</eissn><coden>HDTYAT</coden><abstract>Diverse Asian rice ( Oryza sativa ) germplasm has been used to identify associations between various quantitative traits and RAPD molecular markers using multiple regression analysis. This has allowed us to predict for other samples of germplasm their performance for traits such as culm length and number, days to flowering, grain width, and panicle and leaf length using only RAPD marker data. Such predictive capability is possible because of the availability of extensive diversity held in genebanks, and can be used in the future to facilitate the exploitation of that biodiversity. More specifically the methodology could facilitate crop improvement by rapid ideotype prediction. For the mapping and isolation of QTLs (genes controlling quantitative traits) the method would provide information to guide the selection of parental material for hybridization and markers expected to show linkage to QTLs. It may also be possible that these associations could lead the way towards marker-assisted selection during breeding programs. In the future, this demonstration of association between markers and easily measured traits could also be extended to the study of important adaptive traits, such as stress tolerance, found either within germplasm collections or in natural populations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1038/hdy.1996.43</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 1996-03, Vol.76 (3), p.296-304
issn 0018-067X
1365-2540
language eng
recordid cdi_proquest_miscellaneous_17048992
source Nature
subjects Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Classical genetics, quantitative genetics, hybrids
Cytogenetics
Ecology
Evolutionary Biology
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Human Genetics
original-article
Oryza sativa
Plant Genetics and Genomics
Pteridophyta, spermatophyta
Vegetals
title Predicting quantitative variation within rice germplasm using molecular markers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20quantitative%20variation%20within%20rice%20germplasm%20using%20molecular%20markers&rft.jtitle=Heredity&rft.au=Virk,%20Parminder%20S&rft.date=1996-03-01&rft.volume=76&rft.issue=3&rft.spage=296&rft.epage=304&rft.pages=296-304&rft.issn=0018-067X&rft.eissn=1365-2540&rft.coden=HDTYAT&rft_id=info:doi/10.1038/hdy.1996.43&rft_dat=%3Cproquest_cross%3E17048992%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-bc0c759d6e0afbe7b2dcbc98a0b20a61b5ae9d212e11f87748b533cd699221443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17048992&rft_id=info:pmid/&rfr_iscdi=true