Loading…

Log-ratio approach in curve fitting for concentration-response experiments

The assessment of the ecological risk of chemical contamination by pollutants, pesticides or toxicants is of primary interest in environmental statistics. Concentration-response models play a fundamental role in computing the risk values connected with some exposure levels of a particular contaminan...

Full description

Saved in:
Bibliographic Details
Published in:Environmental and ecological statistics 2015-06, Vol.22 (2), p.275-295
Main Authors: Monti, Gianna S., Migliorati, Sonia, Hron, Karel, Hrůzová, Klára, Fišerová, Eva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3
cites cdi_FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3
container_end_page 295
container_issue 2
container_start_page 275
container_title Environmental and ecological statistics
container_volume 22
creator Monti, Gianna S.
Migliorati, Sonia
Hron, Karel
Hrůzová, Klára
Fišerová, Eva
description The assessment of the ecological risk of chemical contamination by pollutants, pesticides or toxicants is of primary interest in environmental statistics. Concentration-response models play a fundamental role in computing the risk values connected with some exposure levels of a particular contaminant in living organisms. The present paper proposes a regression model called simplicial regression. This model is able to cope with the relative character of the explanatory and response parts via the logratio methodology of compositional data. Consequently, it allows performance of the corresponding statistical inference under the assumption of normality. Some real-world examples show that simplicial regression even outperforms the existing well-established methodologies on standard accuracy and quality-of-fit criteria. The better fit is due to the change of scale entailed by the new model.
doi_str_mv 10.1007/s10651-014-0298-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705062365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3687284651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RyffmKMVPCl70HGI2W7e0yZrsivbXm1oPIniaYeZ5h3dehE4JXBAAdZkJSEEwEI6B6hpv9tCECMUwA9D7pWeC4lqAOERHOS8BgBMqJuhhHhc42aGLle37FK17rbpQuTG9-6rthqELi6qNqXIxOB-GbzTg5HMfQ_aV_-h96tZlk4_RQWtX2Z_81Cl6vrl-mt3h-ePt_exqjh3jesAauIa61lw6CoRx7iyFhlnQrVK1I64MW2cb6kXDvGKcKCUbZ1-sFrVWlk3R-e5usfs2-jyYdZedX61s8HHMhigQICmToqBnf9BlHFMo7gyRNaFSSUkKRXaUSzHn5FvTl5ds-jQEzDZds0vXlHTNNl2zKRq60-TChoVPvy7_K_oCwHd80g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681267661</pqid></control><display><type>article</type><title>Log-ratio approach in curve fitting for concentration-response experiments</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Monti, Gianna S. ; Migliorati, Sonia ; Hron, Karel ; Hrůzová, Klára ; Fišerová, Eva</creator><creatorcontrib>Monti, Gianna S. ; Migliorati, Sonia ; Hron, Karel ; Hrůzová, Klára ; Fišerová, Eva</creatorcontrib><description>The assessment of the ecological risk of chemical contamination by pollutants, pesticides or toxicants is of primary interest in environmental statistics. Concentration-response models play a fundamental role in computing the risk values connected with some exposure levels of a particular contaminant in living organisms. The present paper proposes a regression model called simplicial regression. This model is able to cope with the relative character of the explanatory and response parts via the logratio methodology of compositional data. Consequently, it allows performance of the corresponding statistical inference under the assumption of normality. Some real-world examples show that simplicial regression even outperforms the existing well-established methodologies on standard accuracy and quality-of-fit criteria. The better fit is due to the change of scale entailed by the new model.</description><identifier>ISSN: 1352-8505</identifier><identifier>EISSN: 1573-3009</identifier><identifier>DOI: 10.1007/s10651-014-0298-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binomial distribution ; Biomedical and Life Sciences ; Chemical contaminants ; Chemical contamination ; Chemical pollution ; Chemistry and Earth Sciences ; Computer Science ; Contaminants ; Ecology ; Environmental statistics ; Generalized linear models ; Health Sciences ; Life Sciences ; Math. Appl. in Environmental Science ; Medicine ; Pesticide toxicity ; Pesticides ; Physics ; Pollution ; Regression analysis ; Risk assessment ; Statistics ; Statistics for Engineering ; Statistics for Life Sciences ; Studies ; Theoretical Ecology/Statistics ; Toxicants</subject><ispartof>Environmental and ecological statistics, 2015-06, Vol.22 (2), p.275-295</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3</citedby><cites>FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1681267661/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1681267661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids></links><search><creatorcontrib>Monti, Gianna S.</creatorcontrib><creatorcontrib>Migliorati, Sonia</creatorcontrib><creatorcontrib>Hron, Karel</creatorcontrib><creatorcontrib>Hrůzová, Klára</creatorcontrib><creatorcontrib>Fišerová, Eva</creatorcontrib><title>Log-ratio approach in curve fitting for concentration-response experiments</title><title>Environmental and ecological statistics</title><addtitle>Environ Ecol Stat</addtitle><description>The assessment of the ecological risk of chemical contamination by pollutants, pesticides or toxicants is of primary interest in environmental statistics. Concentration-response models play a fundamental role in computing the risk values connected with some exposure levels of a particular contaminant in living organisms. The present paper proposes a regression model called simplicial regression. This model is able to cope with the relative character of the explanatory and response parts via the logratio methodology of compositional data. Consequently, it allows performance of the corresponding statistical inference under the assumption of normality. Some real-world examples show that simplicial regression even outperforms the existing well-established methodologies on standard accuracy and quality-of-fit criteria. The better fit is due to the change of scale entailed by the new model.</description><subject>Binomial distribution</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical contaminants</subject><subject>Chemical contamination</subject><subject>Chemical pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Contaminants</subject><subject>Ecology</subject><subject>Environmental statistics</subject><subject>Generalized linear models</subject><subject>Health Sciences</subject><subject>Life Sciences</subject><subject>Math. Appl. in Environmental Science</subject><subject>Medicine</subject><subject>Pesticide toxicity</subject><subject>Pesticides</subject><subject>Physics</subject><subject>Pollution</subject><subject>Regression analysis</subject><subject>Risk assessment</subject><subject>Statistics</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Studies</subject><subject>Theoretical Ecology/Statistics</subject><subject>Toxicants</subject><issn>1352-8505</issn><issn>1573-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy_RyffmKMVPCl70HGI2W7e0yZrsivbXm1oPIniaYeZ5h3dehE4JXBAAdZkJSEEwEI6B6hpv9tCECMUwA9D7pWeC4lqAOERHOS8BgBMqJuhhHhc42aGLle37FK17rbpQuTG9-6rthqELi6qNqXIxOB-GbzTg5HMfQ_aV_-h96tZlk4_RQWtX2Z_81Cl6vrl-mt3h-ePt_exqjh3jesAauIa61lw6CoRx7iyFhlnQrVK1I64MW2cb6kXDvGKcKCUbZ1-sFrVWlk3R-e5usfs2-jyYdZedX61s8HHMhigQICmToqBnf9BlHFMo7gyRNaFSSUkKRXaUSzHn5FvTl5ds-jQEzDZds0vXlHTNNl2zKRq60-TChoVPvy7_K_oCwHd80g</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Monti, Gianna S.</creator><creator>Migliorati, Sonia</creator><creator>Hron, Karel</creator><creator>Hrůzová, Klára</creator><creator>Fišerová, Eva</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.G</scope><scope>LK8</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>20150601</creationdate><title>Log-ratio approach in curve fitting for concentration-response experiments</title><author>Monti, Gianna S. ; Migliorati, Sonia ; Hron, Karel ; Hrůzová, Klára ; Fišerová, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binomial distribution</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical contaminants</topic><topic>Chemical contamination</topic><topic>Chemical pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Contaminants</topic><topic>Ecology</topic><topic>Environmental statistics</topic><topic>Generalized linear models</topic><topic>Health Sciences</topic><topic>Life Sciences</topic><topic>Math. Appl. in Environmental Science</topic><topic>Medicine</topic><topic>Pesticide toxicity</topic><topic>Pesticides</topic><topic>Physics</topic><topic>Pollution</topic><topic>Regression analysis</topic><topic>Risk assessment</topic><topic>Statistics</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Studies</topic><topic>Theoretical Ecology/Statistics</topic><topic>Toxicants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monti, Gianna S.</creatorcontrib><creatorcontrib>Migliorati, Sonia</creatorcontrib><creatorcontrib>Hron, Karel</creatorcontrib><creatorcontrib>Hrůzová, Klára</creatorcontrib><creatorcontrib>Fišerová, Eva</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>Environmental and ecological statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monti, Gianna S.</au><au>Migliorati, Sonia</au><au>Hron, Karel</au><au>Hrůzová, Klára</au><au>Fišerová, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Log-ratio approach in curve fitting for concentration-response experiments</atitle><jtitle>Environmental and ecological statistics</jtitle><stitle>Environ Ecol Stat</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>22</volume><issue>2</issue><spage>275</spage><epage>295</epage><pages>275-295</pages><issn>1352-8505</issn><eissn>1573-3009</eissn><abstract>The assessment of the ecological risk of chemical contamination by pollutants, pesticides or toxicants is of primary interest in environmental statistics. Concentration-response models play a fundamental role in computing the risk values connected with some exposure levels of a particular contaminant in living organisms. The present paper proposes a regression model called simplicial regression. This model is able to cope with the relative character of the explanatory and response parts via the logratio methodology of compositional data. Consequently, it allows performance of the corresponding statistical inference under the assumption of normality. Some real-world examples show that simplicial regression even outperforms the existing well-established methodologies on standard accuracy and quality-of-fit criteria. The better fit is due to the change of scale entailed by the new model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10651-014-0298-z</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1352-8505
ispartof Environmental and ecological statistics, 2015-06, Vol.22 (2), p.275-295
issn 1352-8505
1573-3009
language eng
recordid cdi_proquest_miscellaneous_1705062365
source ABI/INFORM Global; Springer Nature
subjects Binomial distribution
Biomedical and Life Sciences
Chemical contaminants
Chemical contamination
Chemical pollution
Chemistry and Earth Sciences
Computer Science
Contaminants
Ecology
Environmental statistics
Generalized linear models
Health Sciences
Life Sciences
Math. Appl. in Environmental Science
Medicine
Pesticide toxicity
Pesticides
Physics
Pollution
Regression analysis
Risk assessment
Statistics
Statistics for Engineering
Statistics for Life Sciences
Studies
Theoretical Ecology/Statistics
Toxicants
title Log-ratio approach in curve fitting for concentration-response experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Log-ratio%20approach%20in%20curve%20fitting%20for%20concentration-response%20experiments&rft.jtitle=Environmental%20and%20ecological%20statistics&rft.au=Monti,%20Gianna%20S.&rft.date=2015-06-01&rft.volume=22&rft.issue=2&rft.spage=275&rft.epage=295&rft.pages=275-295&rft.issn=1352-8505&rft.eissn=1573-3009&rft_id=info:doi/10.1007/s10651-014-0298-z&rft_dat=%3Cproquest_cross%3E3687284651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-9049088946c201344ca20d3a09f778c1c013fcad2e5d3e7341776dcaba95897a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1681267661&rft_id=info:pmid/&rfr_iscdi=true