Loading…
Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models
Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatin...
Saved in:
Published in: | Geophysical research letters 2014-10, Vol.41 (19), p.6841-6847 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3 |
container_end_page | 6847 |
container_issue | 19 |
container_start_page | 6841 |
container_title | Geophysical research letters |
container_volume | 41 |
creator | Warzinski, Robert P. Lynn, Ronald Haljasmaa, Igor Leifer, Ira Shaffer, Frank Anderson, Brian J. Levine, Jonathan S. |
description | Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions.
Key Points
Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models |
doi_str_mv | 10.1002/2014GL061665 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705067927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642228063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJZbCjQ9giQsHUsb_E26ohV2kFRVV0R4tO7F3XZJ4sROWfPu62qpCPbSnGWl-b2aeXlG8w3CGAcgnApgt1yCwEPxFscA1Y2UFIF8WC4A690SKV8XrlG4AgALFi2K6mAfd-wb1Ie53oQvbGQWHtjqh3dxGPVoUBqRRb8edHiwykzGdRX5AhzyLn9GlSTb-1aMPQ0J6aNFgD3mc_HY3JuRCfNjjfNfnM63t0pvixOku2bf39bT49e3r9fmqXF8uv59_WZeaU8xL2simbqzRxElT1cxgcK1lFGczBoCJpoYWN0YYrTE1xNGW1cC5AcoYdi09LT4c9-5j-DPZNKrep8Z2XbYSpqSwBA5C1kQ-jwpGCKlA0Iy-f4TehCkO2YjCdf6Ncy7qJ6lKEIxpxatMfTxSTQwpRevUPvpex1lhUHehqv9DzTg54gff2flJVi2v1pxgficqjyKfRvvvQaTjbyUklVxtfizV5uqarjYXP9WK3gLgPLCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862113858</pqid></control><display><type>article</type><title>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Warzinski, Robert P. ; Lynn, Ronald ; Haljasmaa, Igor ; Leifer, Ira ; Shaffer, Frank ; Anderson, Brian J. ; Levine, Jonathan S.</creator><creatorcontrib>Warzinski, Robert P. ; Lynn, Ronald ; Haljasmaa, Igor ; Leifer, Ira ; Shaffer, Frank ; Anderson, Brian J. ; Levine, Jonathan S.</creatorcontrib><description>Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions.
Key Points
Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL061665</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Air pollution ; Anthropogenic factors ; Atmosphere ; Atmospheric models ; bubble hydrodynamics ; Bubbles ; Budgeting ; Budgets ; Coating ; Coatings ; Computational fluid dynamics ; Computer simulation ; Deep sea ; Deep water ; Dissociation ; Dissolution ; Dissolving ; Eruptions ; Fluid flow ; Fluid mechanics ; Formations ; Gas hydrates ; Gases ; Greenhouse gases ; Human influences ; hydrate film modeling ; hydrate morphology ; Hydrates ; hydrocarbon transport ; Hydrocarbons ; Hydrodynamics ; marine seeps ; Methane ; Morphology ; Ocean warming ; ocean/atmospheric gas partitioning ; Plume models ; Sea ice ; Seawater ; Survival ; Transit ; Transport ; Transportation models ; Water ; Water column</subject><ispartof>Geophysical research letters, 2014-10, Vol.41 (19), p.6841-6847</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</citedby><cites>FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL061665$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL061665$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Warzinski, Robert P.</creatorcontrib><creatorcontrib>Lynn, Ronald</creatorcontrib><creatorcontrib>Haljasmaa, Igor</creatorcontrib><creatorcontrib>Leifer, Ira</creatorcontrib><creatorcontrib>Shaffer, Frank</creatorcontrib><creatorcontrib>Anderson, Brian J.</creatorcontrib><creatorcontrib>Levine, Jonathan S.</creatorcontrib><title>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions.
Key Points
Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models</description><subject>Air pollution</subject><subject>Anthropogenic factors</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>bubble hydrodynamics</subject><subject>Bubbles</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>Coating</subject><subject>Coatings</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deep sea</subject><subject>Deep water</subject><subject>Dissociation</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Eruptions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Formations</subject><subject>Gas hydrates</subject><subject>Gases</subject><subject>Greenhouse gases</subject><subject>Human influences</subject><subject>hydrate film modeling</subject><subject>hydrate morphology</subject><subject>Hydrates</subject><subject>hydrocarbon transport</subject><subject>Hydrocarbons</subject><subject>Hydrodynamics</subject><subject>marine seeps</subject><subject>Methane</subject><subject>Morphology</subject><subject>Ocean warming</subject><subject>ocean/atmospheric gas partitioning</subject><subject>Plume models</subject><subject>Sea ice</subject><subject>Seawater</subject><subject>Survival</subject><subject>Transit</subject><subject>Transport</subject><subject>Transportation models</subject><subject>Water</subject><subject>Water column</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU9v1DAQxSNEJZbCjQ9giQsHUsb_E26ohV2kFRVV0R4tO7F3XZJ4sROWfPu62qpCPbSnGWl-b2aeXlG8w3CGAcgnApgt1yCwEPxFscA1Y2UFIF8WC4A690SKV8XrlG4AgALFi2K6mAfd-wb1Ie53oQvbGQWHtjqh3dxGPVoUBqRRb8edHiwykzGdRX5AhzyLn9GlSTb-1aMPQ0J6aNFgD3mc_HY3JuRCfNjjfNfnM63t0pvixOku2bf39bT49e3r9fmqXF8uv59_WZeaU8xL2simbqzRxElT1cxgcK1lFGczBoCJpoYWN0YYrTE1xNGW1cC5AcoYdi09LT4c9-5j-DPZNKrep8Z2XbYSpqSwBA5C1kQ-jwpGCKlA0Iy-f4TehCkO2YjCdf6Ncy7qJ6lKEIxpxatMfTxSTQwpRevUPvpex1lhUHehqv9DzTg54gff2flJVi2v1pxgficqjyKfRvvvQaTjbyUklVxtfizV5uqarjYXP9WK3gLgPLCU</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Warzinski, Robert P.</creator><creator>Lynn, Ronald</creator><creator>Haljasmaa, Igor</creator><creator>Leifer, Ira</creator><creator>Shaffer, Frank</creator><creator>Anderson, Brian J.</creator><creator>Levine, Jonathan S.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20141016</creationdate><title>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</title><author>Warzinski, Robert P. ; Lynn, Ronald ; Haljasmaa, Igor ; Leifer, Ira ; Shaffer, Frank ; Anderson, Brian J. ; Levine, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air pollution</topic><topic>Anthropogenic factors</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>bubble hydrodynamics</topic><topic>Bubbles</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>Coating</topic><topic>Coatings</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deep sea</topic><topic>Deep water</topic><topic>Dissociation</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Eruptions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Formations</topic><topic>Gas hydrates</topic><topic>Gases</topic><topic>Greenhouse gases</topic><topic>Human influences</topic><topic>hydrate film modeling</topic><topic>hydrate morphology</topic><topic>Hydrates</topic><topic>hydrocarbon transport</topic><topic>Hydrocarbons</topic><topic>Hydrodynamics</topic><topic>marine seeps</topic><topic>Methane</topic><topic>Morphology</topic><topic>Ocean warming</topic><topic>ocean/atmospheric gas partitioning</topic><topic>Plume models</topic><topic>Sea ice</topic><topic>Seawater</topic><topic>Survival</topic><topic>Transit</topic><topic>Transport</topic><topic>Transportation models</topic><topic>Water</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warzinski, Robert P.</creatorcontrib><creatorcontrib>Lynn, Ronald</creatorcontrib><creatorcontrib>Haljasmaa, Igor</creatorcontrib><creatorcontrib>Leifer, Ira</creatorcontrib><creatorcontrib>Shaffer, Frank</creatorcontrib><creatorcontrib>Anderson, Brian J.</creatorcontrib><creatorcontrib>Levine, Jonathan S.</creatorcontrib><collection>Istex</collection><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warzinski, Robert P.</au><au>Lynn, Ronald</au><au>Haljasmaa, Igor</au><au>Leifer, Ira</au><au>Shaffer, Frank</au><au>Anderson, Brian J.</au><au>Levine, Jonathan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-10-16</date><risdate>2014</risdate><volume>41</volume><issue>19</issue><spage>6841</spage><epage>6847</epage><pages>6841-6847</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions.
Key Points
Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL061665</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2014-10, Vol.41 (19), p.6841-6847 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1705067927 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Air pollution Anthropogenic factors Atmosphere Atmospheric models bubble hydrodynamics Bubbles Budgeting Budgets Coating Coatings Computational fluid dynamics Computer simulation Deep sea Deep water Dissociation Dissolution Dissolving Eruptions Fluid flow Fluid mechanics Formations Gas hydrates Gases Greenhouse gases Human influences hydrate film modeling hydrate morphology Hydrates hydrocarbon transport Hydrocarbons Hydrodynamics marine seeps Methane Morphology Ocean warming ocean/atmospheric gas partitioning Plume models Sea ice Seawater Survival Transit Transport Transportation models Water Water column |
title | Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20morphology%20of%20gas%20hydrate%20on%20a%20methane%20bubble%20in%20water:%20Observations%20and%20new%20insights%20for%20hydrate%20film%20models&rft.jtitle=Geophysical%20research%20letters&rft.au=Warzinski,%20Robert%20P.&rft.date=2014-10-16&rft.volume=41&rft.issue=19&rft.spage=6841&rft.epage=6847&rft.pages=6841-6847&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL061665&rft_dat=%3Cproquest_cross%3E1642228063%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1862113858&rft_id=info:pmid/&rfr_iscdi=true |