Loading…

Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatin...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2014-10, Vol.41 (19), p.6841-6847
Main Authors: Warzinski, Robert P., Lynn, Ronald, Haljasmaa, Igor, Leifer, Ira, Shaffer, Frank, Anderson, Brian J., Levine, Jonathan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3
cites cdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3
container_end_page 6847
container_issue 19
container_start_page 6841
container_title Geophysical research letters
container_volume 41
creator Warzinski, Robert P.
Lynn, Ronald
Haljasmaa, Igor
Leifer, Ira
Shaffer, Frank
Anderson, Brian J.
Levine, Jonathan S.
description Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions. Key Points Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models
doi_str_mv 10.1002/2014GL061665
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705067927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642228063</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJZbCjQ9giQsHUsb_E26ohV2kFRVV0R4tO7F3XZJ4sROWfPu62qpCPbSnGWl-b2aeXlG8w3CGAcgnApgt1yCwEPxFscA1Y2UFIF8WC4A690SKV8XrlG4AgALFi2K6mAfd-wb1Ie53oQvbGQWHtjqh3dxGPVoUBqRRb8edHiwykzGdRX5AhzyLn9GlSTb-1aMPQ0J6aNFgD3mc_HY3JuRCfNjjfNfnM63t0pvixOku2bf39bT49e3r9fmqXF8uv59_WZeaU8xL2simbqzRxElT1cxgcK1lFGczBoCJpoYWN0YYrTE1xNGW1cC5AcoYdi09LT4c9-5j-DPZNKrep8Z2XbYSpqSwBA5C1kQ-jwpGCKlA0Iy-f4TehCkO2YjCdf6Ncy7qJ6lKEIxpxatMfTxSTQwpRevUPvpex1lhUHehqv9DzTg54gff2flJVi2v1pxgficqjyKfRvvvQaTjbyUklVxtfizV5uqarjYXP9WK3gLgPLCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862113858</pqid></control><display><type>article</type><title>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Warzinski, Robert P. ; Lynn, Ronald ; Haljasmaa, Igor ; Leifer, Ira ; Shaffer, Frank ; Anderson, Brian J. ; Levine, Jonathan S.</creator><creatorcontrib>Warzinski, Robert P. ; Lynn, Ronald ; Haljasmaa, Igor ; Leifer, Ira ; Shaffer, Frank ; Anderson, Brian J. ; Levine, Jonathan S.</creatorcontrib><description>Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions. Key Points Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL061665</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Air pollution ; Anthropogenic factors ; Atmosphere ; Atmospheric models ; bubble hydrodynamics ; Bubbles ; Budgeting ; Budgets ; Coating ; Coatings ; Computational fluid dynamics ; Computer simulation ; Deep sea ; Deep water ; Dissociation ; Dissolution ; Dissolving ; Eruptions ; Fluid flow ; Fluid mechanics ; Formations ; Gas hydrates ; Gases ; Greenhouse gases ; Human influences ; hydrate film modeling ; hydrate morphology ; Hydrates ; hydrocarbon transport ; Hydrocarbons ; Hydrodynamics ; marine seeps ; Methane ; Morphology ; Ocean warming ; ocean/atmospheric gas partitioning ; Plume models ; Sea ice ; Seawater ; Survival ; Transit ; Transport ; Transportation models ; Water ; Water column</subject><ispartof>Geophysical research letters, 2014-10, Vol.41 (19), p.6841-6847</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</citedby><cites>FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL061665$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL061665$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Warzinski, Robert P.</creatorcontrib><creatorcontrib>Lynn, Ronald</creatorcontrib><creatorcontrib>Haljasmaa, Igor</creatorcontrib><creatorcontrib>Leifer, Ira</creatorcontrib><creatorcontrib>Shaffer, Frank</creatorcontrib><creatorcontrib>Anderson, Brian J.</creatorcontrib><creatorcontrib>Levine, Jonathan S.</creatorcontrib><title>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions. Key Points Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models</description><subject>Air pollution</subject><subject>Anthropogenic factors</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>bubble hydrodynamics</subject><subject>Bubbles</subject><subject>Budgeting</subject><subject>Budgets</subject><subject>Coating</subject><subject>Coatings</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Deep sea</subject><subject>Deep water</subject><subject>Dissociation</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Eruptions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Formations</subject><subject>Gas hydrates</subject><subject>Gases</subject><subject>Greenhouse gases</subject><subject>Human influences</subject><subject>hydrate film modeling</subject><subject>hydrate morphology</subject><subject>Hydrates</subject><subject>hydrocarbon transport</subject><subject>Hydrocarbons</subject><subject>Hydrodynamics</subject><subject>marine seeps</subject><subject>Methane</subject><subject>Morphology</subject><subject>Ocean warming</subject><subject>ocean/atmospheric gas partitioning</subject><subject>Plume models</subject><subject>Sea ice</subject><subject>Seawater</subject><subject>Survival</subject><subject>Transit</subject><subject>Transport</subject><subject>Transportation models</subject><subject>Water</subject><subject>Water column</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU9v1DAQxSNEJZbCjQ9giQsHUsb_E26ohV2kFRVV0R4tO7F3XZJ4sROWfPu62qpCPbSnGWl-b2aeXlG8w3CGAcgnApgt1yCwEPxFscA1Y2UFIF8WC4A690SKV8XrlG4AgALFi2K6mAfd-wb1Ie53oQvbGQWHtjqh3dxGPVoUBqRRb8edHiwykzGdRX5AhzyLn9GlSTb-1aMPQ0J6aNFgD3mc_HY3JuRCfNjjfNfnM63t0pvixOku2bf39bT49e3r9fmqXF8uv59_WZeaU8xL2simbqzRxElT1cxgcK1lFGczBoCJpoYWN0YYrTE1xNGW1cC5AcoYdi09LT4c9-5j-DPZNKrep8Z2XbYSpqSwBA5C1kQ-jwpGCKlA0Iy-f4TehCkO2YjCdf6Ncy7qJ6lKEIxpxatMfTxSTQwpRevUPvpex1lhUHehqv9DzTg54gff2flJVi2v1pxgficqjyKfRvvvQaTjbyUklVxtfizV5uqarjYXP9WK3gLgPLCU</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Warzinski, Robert P.</creator><creator>Lynn, Ronald</creator><creator>Haljasmaa, Igor</creator><creator>Leifer, Ira</creator><creator>Shaffer, Frank</creator><creator>Anderson, Brian J.</creator><creator>Levine, Jonathan S.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20141016</creationdate><title>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</title><author>Warzinski, Robert P. ; Lynn, Ronald ; Haljasmaa, Igor ; Leifer, Ira ; Shaffer, Frank ; Anderson, Brian J. ; Levine, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air pollution</topic><topic>Anthropogenic factors</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>bubble hydrodynamics</topic><topic>Bubbles</topic><topic>Budgeting</topic><topic>Budgets</topic><topic>Coating</topic><topic>Coatings</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Deep sea</topic><topic>Deep water</topic><topic>Dissociation</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Eruptions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Formations</topic><topic>Gas hydrates</topic><topic>Gases</topic><topic>Greenhouse gases</topic><topic>Human influences</topic><topic>hydrate film modeling</topic><topic>hydrate morphology</topic><topic>Hydrates</topic><topic>hydrocarbon transport</topic><topic>Hydrocarbons</topic><topic>Hydrodynamics</topic><topic>marine seeps</topic><topic>Methane</topic><topic>Morphology</topic><topic>Ocean warming</topic><topic>ocean/atmospheric gas partitioning</topic><topic>Plume models</topic><topic>Sea ice</topic><topic>Seawater</topic><topic>Survival</topic><topic>Transit</topic><topic>Transport</topic><topic>Transportation models</topic><topic>Water</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warzinski, Robert P.</creatorcontrib><creatorcontrib>Lynn, Ronald</creatorcontrib><creatorcontrib>Haljasmaa, Igor</creatorcontrib><creatorcontrib>Leifer, Ira</creatorcontrib><creatorcontrib>Shaffer, Frank</creatorcontrib><creatorcontrib>Anderson, Brian J.</creatorcontrib><creatorcontrib>Levine, Jonathan S.</creatorcontrib><collection>Istex</collection><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warzinski, Robert P.</au><au>Lynn, Ronald</au><au>Haljasmaa, Igor</au><au>Leifer, Ira</au><au>Shaffer, Frank</au><au>Anderson, Brian J.</au><au>Levine, Jonathan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-10-16</date><risdate>2014</risdate><volume>41</volume><issue>19</issue><spage>6841</spage><epage>6847</epage><pages>6841-6847</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high‐definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep‐sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep‐sea eruptions. Key Points Complex surface mechanisms govern hydrate formation and dissociation on bubblesSurface hydrate morphology and coverage characteristics linked to hydrodynamicsNew mechanistic insights may have important implications for bubble plume models</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL061665</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2014-10, Vol.41 (19), p.6841-6847
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1705067927
source Wiley-Blackwell AGU Digital Archive
subjects Air pollution
Anthropogenic factors
Atmosphere
Atmospheric models
bubble hydrodynamics
Bubbles
Budgeting
Budgets
Coating
Coatings
Computational fluid dynamics
Computer simulation
Deep sea
Deep water
Dissociation
Dissolution
Dissolving
Eruptions
Fluid flow
Fluid mechanics
Formations
Gas hydrates
Gases
Greenhouse gases
Human influences
hydrate film modeling
hydrate morphology
Hydrates
hydrocarbon transport
Hydrocarbons
Hydrodynamics
marine seeps
Methane
Morphology
Ocean warming
ocean/atmospheric gas partitioning
Plume models
Sea ice
Seawater
Survival
Transit
Transport
Transportation models
Water
Water column
title Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20morphology%20of%20gas%20hydrate%20on%20a%20methane%20bubble%20in%20water:%20Observations%20and%20new%20insights%20for%20hydrate%20film%20models&rft.jtitle=Geophysical%20research%20letters&rft.au=Warzinski,%20Robert%20P.&rft.date=2014-10-16&rft.volume=41&rft.issue=19&rft.spage=6841&rft.epage=6847&rft.pages=6841-6847&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL061665&rft_dat=%3Cproquest_cross%3E1642228063%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5315-3c7c9ceba2f7b894b10fde431094b0046c90d1cb6baa13b2f3d49055b03441fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1862113858&rft_id=info:pmid/&rfr_iscdi=true