Loading…
Making Probabilistic Relational Categories Learnable
Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by in...
Saved in:
Published in: | Cognitive science 2015-08, Vol.39 (6), p.1259-1291 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by investigating conditions hypothesized to facilitate the learning of such categories. Experiment 1 showed that changing the task from a category‐learning task to choosing the “winning” object in each stimulus greatly facilitated participants' ability to learn probabilistic relational categories. Experiments 2 and 3 further investigated the mechanisms underlying this “who's winning” effect. Experiment 4 replicated and generalized the “who's winning” effect with more natural stimuli. Together, our findings suggest that people learn relational concepts by a process of intersection discovery akin to schema induction, and that any task that encourages people to discover a higher order relation that remains invariant over members of a category will facilitate the learning of putatively probabilistic relational concepts. |
---|---|
ISSN: | 0364-0213 1551-6709 |
DOI: | 10.1111/cogs.12199 |