Loading…

Characterizing spiking in noisy type II neurons

Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2015-01, Vol.365, p.40-54
Main Authors: Bod׳ová, Katarína, Paydarfar, David, Forger, Daniel B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123
cites cdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123
container_end_page 54
container_issue
container_start_page 40
container_title Journal of theoretical biology
container_volume 365
creator Bod׳ová, Katarína
Paydarfar, David
Forger, Daniel B.
description Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model. •The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.
doi_str_mv 10.1016/j.jtbi.2014.09.041
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705087876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519314005888</els_id><sourcerecordid>1652423696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</originalsourceid><addsrcrecordid>eNqFkL1OwzAYRS0EoqXwAgwoI0vSz79JJBZU8VOpEgvMluN8AYc2KXaCVJ6eRC2MMN3l3DMcQi4pJBSomtdJ3RUuYUBFAnkCgh6RKYVcxpkU9JhMARiLJc35hJyFUANALrg6JRMmOaU5ZFMyX7wZb2yH3n255jUKW_c-rmuipnVhF3W7LUbLZdRg79smnJOTyqwDXhx2Rl7u754Xj_Hq6WG5uF3FVnDexSiEsVZRxbOqMMakXNhCitRaUWVCZUwWWJZVYYvSCIkG05RzSS0qIyugjM_I9d679e1Hj6HTGxcsrtemwbYPmqYgIUuzVP2PKskE4yofUbZHrW9D8FjprXcb43eagh6b6lqPTfXYVEOuh6bD6erg74sNlr-Xn4gDcLMHcAjy6dDrYB02Fkvn0Xa6bN1f_m8xdIdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652423696</pqid></control><display><type>article</type><title>Characterizing spiking in noisy type II neurons</title><source>Elsevier</source><creator>Bod׳ová, Katarína ; Paydarfar, David ; Forger, Daniel B.</creator><creatorcontrib>Bod׳ová, Katarína ; Paydarfar, David ; Forger, Daniel B.</creatorcontrib><description>Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model. •The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2014.09.041</identifier><identifier>PMID: 25311908</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Axons - physiology ; Decapodiformes ; Excitable systems ; Hodgkin–Huxley model ; Humans ; Markov process ; Models, Neurological ; Stochastic transitions ; Suprachiasmatic Nucleus - physiology ; Synaptic Transmission - physiology</subject><ispartof>Journal of theoretical biology, 2015-01, Vol.365, p.40-54</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</citedby><cites>FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25311908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bod׳ová, Katarína</creatorcontrib><creatorcontrib>Paydarfar, David</creatorcontrib><creatorcontrib>Forger, Daniel B.</creatorcontrib><title>Characterizing spiking in noisy type II neurons</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model. •The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Decapodiformes</subject><subject>Excitable systems</subject><subject>Hodgkin–Huxley model</subject><subject>Humans</subject><subject>Markov process</subject><subject>Models, Neurological</subject><subject>Stochastic transitions</subject><subject>Suprachiasmatic Nucleus - physiology</subject><subject>Synaptic Transmission - physiology</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAYRS0EoqXwAgwoI0vSz79JJBZU8VOpEgvMluN8AYc2KXaCVJ6eRC2MMN3l3DMcQi4pJBSomtdJ3RUuYUBFAnkCgh6RKYVcxpkU9JhMARiLJc35hJyFUANALrg6JRMmOaU5ZFMyX7wZb2yH3n255jUKW_c-rmuipnVhF3W7LUbLZdRg79smnJOTyqwDXhx2Rl7u754Xj_Hq6WG5uF3FVnDexSiEsVZRxbOqMMakXNhCitRaUWVCZUwWWJZVYYvSCIkG05RzSS0qIyugjM_I9d679e1Hj6HTGxcsrtemwbYPmqYgIUuzVP2PKskE4yofUbZHrW9D8FjprXcb43eagh6b6lqPTfXYVEOuh6bD6erg74sNlr-Xn4gDcLMHcAjy6dDrYB02Fkvn0Xa6bN1f_m8xdIdU</recordid><startdate>20150121</startdate><enddate>20150121</enddate><creator>Bod׳ová, Katarína</creator><creator>Paydarfar, David</creator><creator>Forger, Daniel B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20150121</creationdate><title>Characterizing spiking in noisy type II neurons</title><author>Bod׳ová, Katarína ; Paydarfar, David ; Forger, Daniel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Decapodiformes</topic><topic>Excitable systems</topic><topic>Hodgkin–Huxley model</topic><topic>Humans</topic><topic>Markov process</topic><topic>Models, Neurological</topic><topic>Stochastic transitions</topic><topic>Suprachiasmatic Nucleus - physiology</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bod׳ová, Katarína</creatorcontrib><creatorcontrib>Paydarfar, David</creatorcontrib><creatorcontrib>Forger, Daniel B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bod׳ová, Katarína</au><au>Paydarfar, David</au><au>Forger, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing spiking in noisy type II neurons</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2015-01-21</date><risdate>2015</risdate><volume>365</volume><spage>40</spage><epage>54</epage><pages>40-54</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model. •The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25311908</pmid><doi>10.1016/j.jtbi.2014.09.041</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2015-01, Vol.365, p.40-54
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_1705087876
source Elsevier
subjects Animals
Axons - physiology
Decapodiformes
Excitable systems
Hodgkin–Huxley model
Humans
Markov process
Models, Neurological
Stochastic transitions
Suprachiasmatic Nucleus - physiology
Synaptic Transmission - physiology
title Characterizing spiking in noisy type II neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20spiking%20in%20noisy%20type%20II%20neurons&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Bod%D7%B3ov%C3%A1,%20Katar%C3%ADna&rft.date=2015-01-21&rft.volume=365&rft.spage=40&rft.epage=54&rft.pages=40-54&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2014.09.041&rft_dat=%3Cproquest_cross%3E1652423696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652423696&rft_id=info:pmid/25311908&rfr_iscdi=true