Loading…
Characterizing spiking in noisy type II neurons
Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predi...
Saved in:
Published in: | Journal of theoretical biology 2015-01, Vol.365, p.40-54 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123 |
container_end_page | 54 |
container_issue | |
container_start_page | 40 |
container_title | Journal of theoretical biology |
container_volume | 365 |
creator | Bod׳ová, Katarína Paydarfar, David Forger, Daniel B. |
description | Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model.
•The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings. |
doi_str_mv | 10.1016/j.jtbi.2014.09.041 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705087876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519314005888</els_id><sourcerecordid>1652423696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</originalsourceid><addsrcrecordid>eNqFkL1OwzAYRS0EoqXwAgwoI0vSz79JJBZU8VOpEgvMluN8AYc2KXaCVJ6eRC2MMN3l3DMcQi4pJBSomtdJ3RUuYUBFAnkCgh6RKYVcxpkU9JhMARiLJc35hJyFUANALrg6JRMmOaU5ZFMyX7wZb2yH3n255jUKW_c-rmuipnVhF3W7LUbLZdRg79smnJOTyqwDXhx2Rl7u754Xj_Hq6WG5uF3FVnDexSiEsVZRxbOqMMakXNhCitRaUWVCZUwWWJZVYYvSCIkG05RzSS0qIyugjM_I9d679e1Hj6HTGxcsrtemwbYPmqYgIUuzVP2PKskE4yofUbZHrW9D8FjprXcb43eagh6b6lqPTfXYVEOuh6bD6erg74sNlr-Xn4gDcLMHcAjy6dDrYB02Fkvn0Xa6bN1f_m8xdIdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652423696</pqid></control><display><type>article</type><title>Characterizing spiking in noisy type II neurons</title><source>Elsevier</source><creator>Bod׳ová, Katarína ; Paydarfar, David ; Forger, Daniel B.</creator><creatorcontrib>Bod׳ová, Katarína ; Paydarfar, David ; Forger, Daniel B.</creatorcontrib><description>Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model.
•The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2014.09.041</identifier><identifier>PMID: 25311908</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Axons - physiology ; Decapodiformes ; Excitable systems ; Hodgkin–Huxley model ; Humans ; Markov process ; Models, Neurological ; Stochastic transitions ; Suprachiasmatic Nucleus - physiology ; Synaptic Transmission - physiology</subject><ispartof>Journal of theoretical biology, 2015-01, Vol.365, p.40-54</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</citedby><cites>FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25311908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bod׳ová, Katarína</creatorcontrib><creatorcontrib>Paydarfar, David</creatorcontrib><creatorcontrib>Forger, Daniel B.</creatorcontrib><title>Characterizing spiking in noisy type II neurons</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model.
•The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Decapodiformes</subject><subject>Excitable systems</subject><subject>Hodgkin–Huxley model</subject><subject>Humans</subject><subject>Markov process</subject><subject>Models, Neurological</subject><subject>Stochastic transitions</subject><subject>Suprachiasmatic Nucleus - physiology</subject><subject>Synaptic Transmission - physiology</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAYRS0EoqXwAgwoI0vSz79JJBZU8VOpEgvMluN8AYc2KXaCVJ6eRC2MMN3l3DMcQi4pJBSomtdJ3RUuYUBFAnkCgh6RKYVcxpkU9JhMARiLJc35hJyFUANALrg6JRMmOaU5ZFMyX7wZb2yH3n255jUKW_c-rmuipnVhF3W7LUbLZdRg79smnJOTyqwDXhx2Rl7u754Xj_Hq6WG5uF3FVnDexSiEsVZRxbOqMMakXNhCitRaUWVCZUwWWJZVYYvSCIkG05RzSS0qIyugjM_I9d679e1Hj6HTGxcsrtemwbYPmqYgIUuzVP2PKskE4yofUbZHrW9D8FjprXcb43eagh6b6lqPTfXYVEOuh6bD6erg74sNlr-Xn4gDcLMHcAjy6dDrYB02Fkvn0Xa6bN1f_m8xdIdU</recordid><startdate>20150121</startdate><enddate>20150121</enddate><creator>Bod׳ová, Katarína</creator><creator>Paydarfar, David</creator><creator>Forger, Daniel B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20150121</creationdate><title>Characterizing spiking in noisy type II neurons</title><author>Bod׳ová, Katarína ; Paydarfar, David ; Forger, Daniel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Decapodiformes</topic><topic>Excitable systems</topic><topic>Hodgkin–Huxley model</topic><topic>Humans</topic><topic>Markov process</topic><topic>Models, Neurological</topic><topic>Stochastic transitions</topic><topic>Suprachiasmatic Nucleus - physiology</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bod׳ová, Katarína</creatorcontrib><creatorcontrib>Paydarfar, David</creatorcontrib><creatorcontrib>Forger, Daniel B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bod׳ová, Katarína</au><au>Paydarfar, David</au><au>Forger, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing spiking in noisy type II neurons</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2015-01-21</date><risdate>2015</risdate><volume>365</volume><spage>40</spage><epage>54</epage><pages>40-54</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Understanding the dynamics of noisy neurons remains an important challenge in neuroscience. Here, we describe a simple probabilistic model that accurately describes the firing behavior in a large class (type II) of neurons. To demonstrate the usefulness of this model, we show how it accurately predicts the interspike interval (ISI) distributions, bursting patterns and mean firing rates found by: (1) simulations of the classic Hodgkin–Huxley model with channel noise, (2) experimental data from squid giant axon with a noisy input current and (3) experimental data on noisy firing from a neuron within the suprachiasmatic nucleus (SCN). This simple model has 6 parameters, however, in some cases, two of these parameters are coupled and only 5 parameters account for much of the known behavior. From these parameters, many properties of spiking can be found through simple calculation. Thus, we show how the complex effects of noise can be understood through a simple and general probabilistic model.
•The effect of channel stochasticity and input variability on a neuron is studied.•A probabilistic switching model is proposed to capture the neuronal firing.•The model explains firing rate statistics besides the mean firing rate.•The model is easily applicable to experimental recordings.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>25311908</pmid><doi>10.1016/j.jtbi.2014.09.041</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2015-01, Vol.365, p.40-54 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_1705087876 |
source | Elsevier |
subjects | Animals Axons - physiology Decapodiformes Excitable systems Hodgkin–Huxley model Humans Markov process Models, Neurological Stochastic transitions Suprachiasmatic Nucleus - physiology Synaptic Transmission - physiology |
title | Characterizing spiking in noisy type II neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20spiking%20in%20noisy%20type%20II%20neurons&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Bod%D7%B3ov%C3%A1,%20Katar%C3%ADna&rft.date=2015-01-21&rft.volume=365&rft.spage=40&rft.epage=54&rft.pages=40-54&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2014.09.041&rft_dat=%3Cproquest_cross%3E1652423696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-e44acc61638fbaaa734cb547cc4f846825beddfbcbda45eae773351ce6a5f0123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652423696&rft_id=info:pmid/25311908&rfr_iscdi=true |