Loading…
Hidden Properties of Carbon Dots Revealed After HPLC Fractionation
Carbon dots (C-dots) are often synthesized, modified, and studied as a mixture. Unfortunately, the spectroscopic and biological properties measured for such C-dots assume that there is a high degree of homogeneity in the produced sample. By means of high-resolution separation techniques, we show tha...
Saved in:
Published in: | The journal of physical chemistry letters 2013-01, Vol.4 (2), p.239-243 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon dots (C-dots) are often synthesized, modified, and studied as a mixture. Unfortunately, the spectroscopic and biological properties measured for such C-dots assume that there is a high degree of homogeneity in the produced sample. By means of high-resolution separation techniques, we show that “as-synthesized” C-dots exist as a relatively complex mixture and that an unprecedented reduction in such complexity can reveal fractions of C-dots with unique luminescence properties. The wavelength-dependent photoluminescence commonly assigned as an inherent property of C-dots is not present in fractionated samples. While ultraviolet–visible absorption profiles reported for C-dots are typically featureless, we have found fractions of C-dots possessing unique absorption bands, with different fractions possessing specific emission wavelengths. Furthermore, fractionated C-dots showed profound differences in emission quantum yield, allowing for brighter C-dots to be isolated from an apparent low quantum yield mixture. These more luminescent fractions of C-dots displayed improved biological compatibility and usefulness as cellular imaging probes. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/jz301911y |