Loading…
Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation
In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function....
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2015-09, Vol.26 (9), p.2086-2097 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3 |
container_end_page | 2097 |
container_issue | 9 |
container_start_page | 2086 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 26 |
creator | Chen, Mou Tao, Gang Jiang, Bin |
description | In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN. |
doi_str_mv | 10.1109/TNNLS.2014.2360933 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1706205870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6975243</ieee_id><sourcerecordid>1706205870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi1UVFDKHygSstRLL0n9_XGsQgtIUTiECG4rZ2O3hl07tb2q8u9xSMiBucxI88yrmXkB-IrRBGOkfzzM57PFhCDMJoQKpCk9AecECzImVKlPx1o-nYGLnJ9RDYG4YPozOCOcacYxPwfhehtM71u4GJIzrYXTGEqKHVxmH_7AuR2S6Woq_2N6ydDFBA2cdiZnGB1chtamYnyA8xg6H6xJcLHNxfYZPvryF96FzVDgwpQqU3wMX8CpM122F4c8Asvfvx6mt-PZ_c3d9Ods3DKCy1gKbBQziFqpDGIaM-tYq9ZKYsKoXnMqtENMstYptloxibAzTlimpFxTYugIfN_rblL8N9hcmt7n1nadCTYOucESCYK4kqii3z6gz3FIoW63o7hkmtfvjgDZU22KOSfrmk3yvUnbBqNmZ0jzZkizM6Q5GFKHrg7Sw6q36-PI-_srcLkHvLX22BZa8nomfQUIvY5a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705749509</pqid></control><display><type>article</type><title>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Mou ; Tao, Gang ; Jiang, Bin</creator><creatorcontrib>Chen, Mou ; Tao, Gang ; Jiang, Bin</creatorcontrib><description>In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2014.2360933</identifier><identifier>PMID: 25494515</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Backstepping ; Backstepping control ; Computer Simulation ; Control design ; dynamic surface control (DSC) ; Feedback ; Humans ; Neural networks ; Neural Networks (Computer) ; nonlinear disturbance observer (NDO) ; Nonlinear Dynamics ; Nonlinear systems ; Observers ; robust control ; Robustness ; uncertain nonlinear system ; Uncertainty</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-09, Vol.26 (9), p.2086-2097</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</citedby><cites>FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6975243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25494515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Mou</creatorcontrib><creatorcontrib>Tao, Gang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><title>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Backstepping</subject><subject>Backstepping control</subject><subject>Computer Simulation</subject><subject>Control design</subject><subject>dynamic surface control (DSC)</subject><subject>Feedback</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>nonlinear disturbance observer (NDO)</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>robust control</subject><subject>Robustness</subject><subject>uncertain nonlinear system</subject><subject>Uncertainty</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PGzEQhi1UVFDKHygSstRLL0n9_XGsQgtIUTiECG4rZ2O3hl07tb2q8u9xSMiBucxI88yrmXkB-IrRBGOkfzzM57PFhCDMJoQKpCk9AecECzImVKlPx1o-nYGLnJ9RDYG4YPozOCOcacYxPwfhehtM71u4GJIzrYXTGEqKHVxmH_7AuR2S6Woq_2N6ydDFBA2cdiZnGB1chtamYnyA8xg6H6xJcLHNxfYZPvryF96FzVDgwpQqU3wMX8CpM122F4c8Asvfvx6mt-PZ_c3d9Ods3DKCy1gKbBQziFqpDGIaM-tYq9ZKYsKoXnMqtENMstYptloxibAzTlimpFxTYugIfN_rblL8N9hcmt7n1nadCTYOucESCYK4kqii3z6gz3FIoW63o7hkmtfvjgDZU22KOSfrmk3yvUnbBqNmZ0jzZkizM6Q5GFKHrg7Sw6q36-PI-_srcLkHvLX22BZa8nomfQUIvY5a</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Chen, Mou</creator><creator>Tao, Gang</creator><creator>Jiang, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</title><author>Chen, Mou ; Tao, Gang ; Jiang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Backstepping</topic><topic>Backstepping control</topic><topic>Computer Simulation</topic><topic>Control design</topic><topic>dynamic surface control (DSC)</topic><topic>Feedback</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>nonlinear disturbance observer (NDO)</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>robust control</topic><topic>Robustness</topic><topic>uncertain nonlinear system</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mou</creatorcontrib><creatorcontrib>Tao, Gang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mou</au><au>Tao, Gang</au><au>Jiang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>2086</spage><epage>2097</epage><pages>2086-2097</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25494515</pmid><doi>10.1109/TNNLS.2014.2360933</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2015-09, Vol.26 (9), p.2086-2097 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_1706205870 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive systems Artificial neural networks Backstepping Backstepping control Computer Simulation Control design dynamic surface control (DSC) Feedback Humans Neural networks Neural Networks (Computer) nonlinear disturbance observer (NDO) Nonlinear Dynamics Nonlinear systems Observers robust control Robustness uncertain nonlinear system Uncertainty |
title | Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Surface%20Control%20Using%20Neural%20Networks%20for%20a%20Class%20of%20Uncertain%20Nonlinear%20Systems%20With%20Input%20Saturation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Mou&rft.date=2015-09-01&rft.volume=26&rft.issue=9&rft.spage=2086&rft.epage=2097&rft.pages=2086-2097&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2014.2360933&rft_dat=%3Cproquest_pubme%3E1706205870%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1705749509&rft_id=info:pmid/25494515&rft_ieee_id=6975243&rfr_iscdi=true |