Loading…

Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation

In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2015-09, Vol.26 (9), p.2086-2097
Main Authors: Chen, Mou, Tao, Gang, Jiang, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3
cites cdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3
container_end_page 2097
container_issue 9
container_start_page 2086
container_title IEEE transaction on neural networks and learning systems
container_volume 26
creator Chen, Mou
Tao, Gang
Jiang, Bin
description In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.
doi_str_mv 10.1109/TNNLS.2014.2360933
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1706205870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6975243</ieee_id><sourcerecordid>1706205870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi1UVFDKHygSstRLL0n9_XGsQgtIUTiECG4rZ2O3hl07tb2q8u9xSMiBucxI88yrmXkB-IrRBGOkfzzM57PFhCDMJoQKpCk9AecECzImVKlPx1o-nYGLnJ9RDYG4YPozOCOcacYxPwfhehtM71u4GJIzrYXTGEqKHVxmH_7AuR2S6Woq_2N6ydDFBA2cdiZnGB1chtamYnyA8xg6H6xJcLHNxfYZPvryF96FzVDgwpQqU3wMX8CpM122F4c8Asvfvx6mt-PZ_c3d9Ods3DKCy1gKbBQziFqpDGIaM-tYq9ZKYsKoXnMqtENMstYptloxibAzTlimpFxTYugIfN_rblL8N9hcmt7n1nadCTYOucESCYK4kqii3z6gz3FIoW63o7hkmtfvjgDZU22KOSfrmk3yvUnbBqNmZ0jzZkizM6Q5GFKHrg7Sw6q36-PI-_srcLkHvLX22BZa8nomfQUIvY5a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705749509</pqid></control><display><type>article</type><title>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Mou ; Tao, Gang ; Jiang, Bin</creator><creatorcontrib>Chen, Mou ; Tao, Gang ; Jiang, Bin</creatorcontrib><description>In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2014.2360933</identifier><identifier>PMID: 25494515</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive systems ; Artificial neural networks ; Backstepping ; Backstepping control ; Computer Simulation ; Control design ; dynamic surface control (DSC) ; Feedback ; Humans ; Neural networks ; Neural Networks (Computer) ; nonlinear disturbance observer (NDO) ; Nonlinear Dynamics ; Nonlinear systems ; Observers ; robust control ; Robustness ; uncertain nonlinear system ; Uncertainty</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-09, Vol.26 (9), p.2086-2097</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</citedby><cites>FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6975243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25494515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Mou</creatorcontrib><creatorcontrib>Tao, Gang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><title>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Backstepping</subject><subject>Backstepping control</subject><subject>Computer Simulation</subject><subject>Control design</subject><subject>dynamic surface control (DSC)</subject><subject>Feedback</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>nonlinear disturbance observer (NDO)</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>robust control</subject><subject>Robustness</subject><subject>uncertain nonlinear system</subject><subject>Uncertainty</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PGzEQhi1UVFDKHygSstRLL0n9_XGsQgtIUTiECG4rZ2O3hl07tb2q8u9xSMiBucxI88yrmXkB-IrRBGOkfzzM57PFhCDMJoQKpCk9AecECzImVKlPx1o-nYGLnJ9RDYG4YPozOCOcacYxPwfhehtM71u4GJIzrYXTGEqKHVxmH_7AuR2S6Woq_2N6ydDFBA2cdiZnGB1chtamYnyA8xg6H6xJcLHNxfYZPvryF96FzVDgwpQqU3wMX8CpM122F4c8Asvfvx6mt-PZ_c3d9Ods3DKCy1gKbBQziFqpDGIaM-tYq9ZKYsKoXnMqtENMstYptloxibAzTlimpFxTYugIfN_rblL8N9hcmt7n1nadCTYOucESCYK4kqii3z6gz3FIoW63o7hkmtfvjgDZU22KOSfrmk3yvUnbBqNmZ0jzZkizM6Q5GFKHrg7Sw6q36-PI-_srcLkHvLX22BZa8nomfQUIvY5a</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Chen, Mou</creator><creator>Tao, Gang</creator><creator>Jiang, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</title><author>Chen, Mou ; Tao, Gang ; Jiang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Backstepping</topic><topic>Backstepping control</topic><topic>Computer Simulation</topic><topic>Control design</topic><topic>dynamic surface control (DSC)</topic><topic>Feedback</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>nonlinear disturbance observer (NDO)</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>robust control</topic><topic>Robustness</topic><topic>uncertain nonlinear system</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mou</creatorcontrib><creatorcontrib>Tao, Gang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mou</au><au>Tao, Gang</au><au>Jiang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>26</volume><issue>9</issue><spage>2086</spage><epage>2097</epage><pages>2086-2097</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this paper, a dynamic surface control (DSC) scheme is proposed for a class of uncertain strict-feedback nonlinear systems in the presence of input saturation and unknown external disturbance. The radial basis function neural network (RBFNN) is employed to approximate the unknown system function. To efficiently tackle the unknown external disturbance, a nonlinear disturbance observer (NDO) is developed. The developed NDO can relax the known boundary requirement of the unknown disturbance and can guarantee the disturbance estimation error converge to a bounded compact set. Using NDO and RBFNN, the DSC scheme is developed for uncertain nonlinear systems based on a backstepping method. Using a DSC technique, the problem of explosion of complexity inherent in the conventional backstepping method is avoided, which is specially important for designs using neural network approximations. Under the proposed DSC scheme, the ultimately bounded convergence of all closed-loop signals is guaranteed via Lyapunov analysis. Simulation results are given to show the effectiveness of the proposed DSC design using NDO and RBFNN.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25494515</pmid><doi>10.1109/TNNLS.2014.2360933</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2015-09, Vol.26 (9), p.2086-2097
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_1706205870
source IEEE Electronic Library (IEL) Journals
subjects Adaptive systems
Artificial neural networks
Backstepping
Backstepping control
Computer Simulation
Control design
dynamic surface control (DSC)
Feedback
Humans
Neural networks
Neural Networks (Computer)
nonlinear disturbance observer (NDO)
Nonlinear Dynamics
Nonlinear systems
Observers
robust control
Robustness
uncertain nonlinear system
Uncertainty
title Dynamic Surface Control Using Neural Networks for a Class of Uncertain Nonlinear Systems With Input Saturation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Surface%20Control%20Using%20Neural%20Networks%20for%20a%20Class%20of%20Uncertain%20Nonlinear%20Systems%20With%20Input%20Saturation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Mou&rft.date=2015-09-01&rft.volume=26&rft.issue=9&rft.spage=2086&rft.epage=2097&rft.pages=2086-2097&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2014.2360933&rft_dat=%3Cproquest_pubme%3E1706205870%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-761a84a03e78a04914ef4c8d8712439d5369f0474cf84bb4701faf6e4877d32a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1705749509&rft_id=info:pmid/25494515&rft_ieee_id=6975243&rfr_iscdi=true