Loading…

Classification of red wines using suitable markers coupled with multivariate statistic analysis

•Methodologies for classification of five authentic red wine varieties are reported.•Anthocyanins, organic acids, NMR fingerprints, isotopic variables discriminate wines.•A control wine set was used in order to validate the proposed statistic models.•There is great potential to use this data combina...

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry 2016-02, Vol.192, p.1015-1024
Main Authors: Geana, Elisabeta Irina, Popescu, Raluca, Costinel, Diana, Dinca, Oana Romina, Ionete, Roxana Elena, Stefanescu, Ioan, Artem, Victoria, Bala, Camelia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3
cites cdi_FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3
container_end_page 1024
container_issue
container_start_page 1015
container_title Food chemistry
container_volume 192
creator Geana, Elisabeta Irina
Popescu, Raluca
Costinel, Diana
Dinca, Oana Romina
Ionete, Roxana Elena
Stefanescu, Ioan
Artem, Victoria
Bala, Camelia
description •Methodologies for classification of five authentic red wine varieties are reported.•Anthocyanins, organic acids, NMR fingerprints, isotopic variables discriminate wines.•A control wine set was used in order to validate the proposed statistic models.•There is great potential to use this data combination for wine control. Methodologies for chemometric classification of five authentic red wine varieties from Murfatlar wine center, Romania, young and aged are reported. The discriminant analysis based on several anthocyanins, organic acids, 13C/12C, 18O/16O and D/H isotopic ratios, 1H and 13C NMR fingerprints revealed a very satisfactory categorization of the wines, both in terms of variety and vintage, thus illustrating the validity of selected variables for wine authentication purposes. LDA applied to the combined data shows 85.7% classification of wines according to grape variety and 71.1% classification of wines according to vintage year, including a control wine set for each categorization, thus allowing an accurate interpretation of the data. Thereby, anthocyanins, certain anthocyanin ratios, oxalic, shikimic, lactic, citric and succinic acids, sugars like glucose, amino acids like histidine, leucine, isoleucine and alanine, and also 2,3-butanediol, methanol, glycerol and isotopic variables were significant for classification of wines.
doi_str_mv 10.1016/j.foodchem.2015.07.112
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1707553860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814615011450</els_id><sourcerecordid>1707553860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3</originalsourceid><addsrcrecordid>eNqFkMFu1DAQhi1URJfCK1Q-9pIwjuPEe2u1agGpEhc4W44zpl6SeOtxivr2eNmWK6e5fP_M_B9jlwJqAaL7tK99jKN7wLluQKga-lqI5g3bCN3Lqoe-OWMbkKArLdrunL0n2gNAYfU7dt50Etq2bTbM7CZLFHxwNoe48Oh5wpH_DgsSXyksPzmtIdthQj7b9AsTcRfXw_QXyg98XqccnmwKNiOnXLZQDo7bxU7PFOgDe-vtRPjxZV6wH3e333dfqvtvn7_ubu4rJzudKzk0CrRqtR5tec0J3wxKy610bQOy934rtjhqCVJ66Np-QKG1Fnqr9OiV8vKCXZ32HlJ8XJGymQM5nCa7YFzJiKJEKak7KGh3Ql2KRAm9OaRQuj0bAeYo1-zNq1xzlGugN0VuCV6-3FiHGcd_sVebBbg-AViaPgVMhlzAxeEYErpsxhj-d-MPtniPBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707553860</pqid></control><display><type>article</type><title>Classification of red wines using suitable markers coupled with multivariate statistic analysis</title><source>ScienceDirect Freedom Collection</source><creator>Geana, Elisabeta Irina ; Popescu, Raluca ; Costinel, Diana ; Dinca, Oana Romina ; Ionete, Roxana Elena ; Stefanescu, Ioan ; Artem, Victoria ; Bala, Camelia</creator><creatorcontrib>Geana, Elisabeta Irina ; Popescu, Raluca ; Costinel, Diana ; Dinca, Oana Romina ; Ionete, Roxana Elena ; Stefanescu, Ioan ; Artem, Victoria ; Bala, Camelia</creatorcontrib><description>•Methodologies for classification of five authentic red wine varieties are reported.•Anthocyanins, organic acids, NMR fingerprints, isotopic variables discriminate wines.•A control wine set was used in order to validate the proposed statistic models.•There is great potential to use this data combination for wine control. Methodologies for chemometric classification of five authentic red wine varieties from Murfatlar wine center, Romania, young and aged are reported. The discriminant analysis based on several anthocyanins, organic acids, 13C/12C, 18O/16O and D/H isotopic ratios, 1H and 13C NMR fingerprints revealed a very satisfactory categorization of the wines, both in terms of variety and vintage, thus illustrating the validity of selected variables for wine authentication purposes. LDA applied to the combined data shows 85.7% classification of wines according to grape variety and 71.1% classification of wines according to vintage year, including a control wine set for each categorization, thus allowing an accurate interpretation of the data. Thereby, anthocyanins, certain anthocyanin ratios, oxalic, shikimic, lactic, citric and succinic acids, sugars like glucose, amino acids like histidine, leucine, isoleucine and alanine, and also 2,3-butanediol, methanol, glycerol and isotopic variables were significant for classification of wines.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2015.07.112</identifier><identifier>PMID: 26304442</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acids - analysis ; Anthocyanins ; Anthocyanins - analysis ; Butylene Glycols ; Carboxylic Acids - analysis ; Discriminant Analysis ; Humans ; Isotopes - analysis ; Isotopic ratio ; Magnetic Resonance Spectroscopy ; Multivariate Analysis ; Multivariate statistics ; NMR fingerprints ; Organic acids ; Oxalic Acid ; Romania ; Vitis - chemistry ; Wine - analysis ; Wine - classification</subject><ispartof>Food chemistry, 2016-02, Vol.192, p.1015-1024</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3</citedby><cites>FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26304442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geana, Elisabeta Irina</creatorcontrib><creatorcontrib>Popescu, Raluca</creatorcontrib><creatorcontrib>Costinel, Diana</creatorcontrib><creatorcontrib>Dinca, Oana Romina</creatorcontrib><creatorcontrib>Ionete, Roxana Elena</creatorcontrib><creatorcontrib>Stefanescu, Ioan</creatorcontrib><creatorcontrib>Artem, Victoria</creatorcontrib><creatorcontrib>Bala, Camelia</creatorcontrib><title>Classification of red wines using suitable markers coupled with multivariate statistic analysis</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>•Methodologies for classification of five authentic red wine varieties are reported.•Anthocyanins, organic acids, NMR fingerprints, isotopic variables discriminate wines.•A control wine set was used in order to validate the proposed statistic models.•There is great potential to use this data combination for wine control. Methodologies for chemometric classification of five authentic red wine varieties from Murfatlar wine center, Romania, young and aged are reported. The discriminant analysis based on several anthocyanins, organic acids, 13C/12C, 18O/16O and D/H isotopic ratios, 1H and 13C NMR fingerprints revealed a very satisfactory categorization of the wines, both in terms of variety and vintage, thus illustrating the validity of selected variables for wine authentication purposes. LDA applied to the combined data shows 85.7% classification of wines according to grape variety and 71.1% classification of wines according to vintage year, including a control wine set for each categorization, thus allowing an accurate interpretation of the data. Thereby, anthocyanins, certain anthocyanin ratios, oxalic, shikimic, lactic, citric and succinic acids, sugars like glucose, amino acids like histidine, leucine, isoleucine and alanine, and also 2,3-butanediol, methanol, glycerol and isotopic variables were significant for classification of wines.</description><subject>Amino Acids - analysis</subject><subject>Anthocyanins</subject><subject>Anthocyanins - analysis</subject><subject>Butylene Glycols</subject><subject>Carboxylic Acids - analysis</subject><subject>Discriminant Analysis</subject><subject>Humans</subject><subject>Isotopes - analysis</subject><subject>Isotopic ratio</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Multivariate Analysis</subject><subject>Multivariate statistics</subject><subject>NMR fingerprints</subject><subject>Organic acids</subject><subject>Oxalic Acid</subject><subject>Romania</subject><subject>Vitis - chemistry</subject><subject>Wine - analysis</subject><subject>Wine - classification</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu1DAQhi1URJfCK1Q-9pIwjuPEe2u1agGpEhc4W44zpl6SeOtxivr2eNmWK6e5fP_M_B9jlwJqAaL7tK99jKN7wLluQKga-lqI5g3bCN3Lqoe-OWMbkKArLdrunL0n2gNAYfU7dt50Etq2bTbM7CZLFHxwNoe48Oh5wpH_DgsSXyksPzmtIdthQj7b9AsTcRfXw_QXyg98XqccnmwKNiOnXLZQDo7bxU7PFOgDe-vtRPjxZV6wH3e333dfqvtvn7_ubu4rJzudKzk0CrRqtR5tec0J3wxKy610bQOy934rtjhqCVJ66Np-QKG1Fnqr9OiV8vKCXZ32HlJ8XJGymQM5nCa7YFzJiKJEKak7KGh3Ql2KRAm9OaRQuj0bAeYo1-zNq1xzlGugN0VuCV6-3FiHGcd_sVebBbg-AViaPgVMhlzAxeEYErpsxhj-d-MPtniPBg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Geana, Elisabeta Irina</creator><creator>Popescu, Raluca</creator><creator>Costinel, Diana</creator><creator>Dinca, Oana Romina</creator><creator>Ionete, Roxana Elena</creator><creator>Stefanescu, Ioan</creator><creator>Artem, Victoria</creator><creator>Bala, Camelia</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160201</creationdate><title>Classification of red wines using suitable markers coupled with multivariate statistic analysis</title><author>Geana, Elisabeta Irina ; Popescu, Raluca ; Costinel, Diana ; Dinca, Oana Romina ; Ionete, Roxana Elena ; Stefanescu, Ioan ; Artem, Victoria ; Bala, Camelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acids - analysis</topic><topic>Anthocyanins</topic><topic>Anthocyanins - analysis</topic><topic>Butylene Glycols</topic><topic>Carboxylic Acids - analysis</topic><topic>Discriminant Analysis</topic><topic>Humans</topic><topic>Isotopes - analysis</topic><topic>Isotopic ratio</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Multivariate Analysis</topic><topic>Multivariate statistics</topic><topic>NMR fingerprints</topic><topic>Organic acids</topic><topic>Oxalic Acid</topic><topic>Romania</topic><topic>Vitis - chemistry</topic><topic>Wine - analysis</topic><topic>Wine - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geana, Elisabeta Irina</creatorcontrib><creatorcontrib>Popescu, Raluca</creatorcontrib><creatorcontrib>Costinel, Diana</creatorcontrib><creatorcontrib>Dinca, Oana Romina</creatorcontrib><creatorcontrib>Ionete, Roxana Elena</creatorcontrib><creatorcontrib>Stefanescu, Ioan</creatorcontrib><creatorcontrib>Artem, Victoria</creatorcontrib><creatorcontrib>Bala, Camelia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geana, Elisabeta Irina</au><au>Popescu, Raluca</au><au>Costinel, Diana</au><au>Dinca, Oana Romina</au><au>Ionete, Roxana Elena</au><au>Stefanescu, Ioan</au><au>Artem, Victoria</au><au>Bala, Camelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of red wines using suitable markers coupled with multivariate statistic analysis</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>192</volume><spage>1015</spage><epage>1024</epage><pages>1015-1024</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•Methodologies for classification of five authentic red wine varieties are reported.•Anthocyanins, organic acids, NMR fingerprints, isotopic variables discriminate wines.•A control wine set was used in order to validate the proposed statistic models.•There is great potential to use this data combination for wine control. Methodologies for chemometric classification of five authentic red wine varieties from Murfatlar wine center, Romania, young and aged are reported. The discriminant analysis based on several anthocyanins, organic acids, 13C/12C, 18O/16O and D/H isotopic ratios, 1H and 13C NMR fingerprints revealed a very satisfactory categorization of the wines, both in terms of variety and vintage, thus illustrating the validity of selected variables for wine authentication purposes. LDA applied to the combined data shows 85.7% classification of wines according to grape variety and 71.1% classification of wines according to vintage year, including a control wine set for each categorization, thus allowing an accurate interpretation of the data. Thereby, anthocyanins, certain anthocyanin ratios, oxalic, shikimic, lactic, citric and succinic acids, sugars like glucose, amino acids like histidine, leucine, isoleucine and alanine, and also 2,3-butanediol, methanol, glycerol and isotopic variables were significant for classification of wines.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26304442</pmid><doi>10.1016/j.foodchem.2015.07.112</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2016-02, Vol.192, p.1015-1024
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_1707553860
source ScienceDirect Freedom Collection
subjects Amino Acids - analysis
Anthocyanins
Anthocyanins - analysis
Butylene Glycols
Carboxylic Acids - analysis
Discriminant Analysis
Humans
Isotopes - analysis
Isotopic ratio
Magnetic Resonance Spectroscopy
Multivariate Analysis
Multivariate statistics
NMR fingerprints
Organic acids
Oxalic Acid
Romania
Vitis - chemistry
Wine - analysis
Wine - classification
title Classification of red wines using suitable markers coupled with multivariate statistic analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20red%20wines%20using%20suitable%20markers%20coupled%20with%20multivariate%20statistic%20analysis&rft.jtitle=Food%20chemistry&rft.au=Geana,%20Elisabeta%20Irina&rft.date=2016-02-01&rft.volume=192&rft.spage=1015&rft.epage=1024&rft.pages=1015-1024&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2015.07.112&rft_dat=%3Cproquest_cross%3E1707553860%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3b25085488da304c1f2b58393c42037ff919ed83033f0647be188818958df55f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1707553860&rft_id=info:pmid/26304442&rfr_iscdi=true