Loading…
Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities
Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytoto...
Saved in:
Published in: | Pharmaceutical research 2015-08, Vol.32 (8), p.2713-2726 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3 |
container_end_page | 2726 |
container_issue | 8 |
container_start_page | 2713 |
container_title | Pharmaceutical research |
container_volume | 32 |
creator | Tukulula, Matshawandile Hayeshi, Rose Fonteh, Pascaline Meyer, Debra Ndamase, Abongile Madziva, Michael T. Khumalo, Vincent Lubuschagne, Philip Naicker, Brendon Swai, Hulda Dube, Admire |
description | Purpose
There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system.
Methods
Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using
1
H and
13
C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug.
Results
Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca
2+
dependent uptake of nanoparticles by the macrophages.
Conclusions
PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy. |
doi_str_mv | 10.1007/s11095-015-1655-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709173009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3732036841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMo7rj6A7xIwIuXaCrdSTrHoXddhVEXVPAW0umaMUNPd5ukF-bfm2FWEUG8VA711atXeYQ8B_4aONdvEgA3knGQDJSUzDwgK5C6YobX3x6SFdeiZo2u4YI8SWnPOW_A1I_JhZClAwpWZN8usR_cyNpp3C87l7Gnt5ubNf3oxml2MQc_YKK3U0qYEv3gfJzm726H9HMOh6VMZrr2OdyFfKRu7OlVXHb0Codwh_FIWze7LgwhB0xPyaOtGxI-u38vyde311_ad2zz6eZ9u94wL6HJTEgQUoita7wRqqlk5-taNp1GiaV0QmkA57GvVQXCl4u2RlSdErJXWtdYXZJXZ905Tj8WTNkeQvI4FK84LcmC5gZ0xbn5P6pMpYXRUhX05V_oflriWA45UcWoroQoFJyp8k0pRdzaOYaDi0cL3J4ys-fMbMnMnjKzJxMv7pWX7oD974lfIRVAnIFUWuMO4x-r_6n6E6WtoGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692687322</pqid></control><display><type>article</type><title>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</title><source>Springer Link</source><creator>Tukulula, Matshawandile ; Hayeshi, Rose ; Fonteh, Pascaline ; Meyer, Debra ; Ndamase, Abongile ; Madziva, Michael T. ; Khumalo, Vincent ; Lubuschagne, Philip ; Naicker, Brendon ; Swai, Hulda ; Dube, Admire</creator><creatorcontrib>Tukulula, Matshawandile ; Hayeshi, Rose ; Fonteh, Pascaline ; Meyer, Debra ; Ndamase, Abongile ; Madziva, Michael T. ; Khumalo, Vincent ; Lubuschagne, Philip ; Naicker, Brendon ; Swai, Hulda ; Dube, Admire</creatorcontrib><description>Purpose
There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system.
Methods
Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using
1
H and
13
C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug.
Results
Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca
2+
dependent uptake of nanoparticles by the macrophages.
Conclusions
PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.</description><identifier>ISSN: 0724-8741</identifier><identifier>ISSN: 1573-904X</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1007/s11095-015-1655-9</identifier><identifier>PMID: 25724161</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antitubercular Agents - administration & dosage ; Antitubercular Agents - pharmacokinetics ; beta-Glucans - chemistry ; beta-Glucans - pharmacology ; Biochemistry ; Biological Transport, Active - drug effects ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Caco-2 Cells ; Carbohydrate Sequence ; Cell Membrane Permeability - drug effects ; Cell Survival - drug effects ; Chemistry, Pharmaceutical ; Drug Delivery Systems ; Excipients - chemistry ; Humans ; Immunotherapy ; Intestinal Absorption ; Lactic Acid - chemistry ; Macrophages - drug effects ; Medical Law ; Molecular Sequence Data ; Nanoparticles ; Pharmacology/Toxicology ; Pharmacy ; Polyglycolic Acid - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer ; Polymers ; Research Paper ; Rifampin - administration & dosage ; Rifampin - pharmacokinetics ; Stimulation, Chemical</subject><ispartof>Pharmaceutical research, 2015-08, Vol.32 (8), p.2713-2726</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</citedby><cites>FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25724161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tukulula, Matshawandile</creatorcontrib><creatorcontrib>Hayeshi, Rose</creatorcontrib><creatorcontrib>Fonteh, Pascaline</creatorcontrib><creatorcontrib>Meyer, Debra</creatorcontrib><creatorcontrib>Ndamase, Abongile</creatorcontrib><creatorcontrib>Madziva, Michael T.</creatorcontrib><creatorcontrib>Khumalo, Vincent</creatorcontrib><creatorcontrib>Lubuschagne, Philip</creatorcontrib><creatorcontrib>Naicker, Brendon</creatorcontrib><creatorcontrib>Swai, Hulda</creatorcontrib><creatorcontrib>Dube, Admire</creatorcontrib><title>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><addtitle>Pharm Res</addtitle><description>Purpose
There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system.
Methods
Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using
1
H and
13
C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug.
Results
Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca
2+
dependent uptake of nanoparticles by the macrophages.
Conclusions
PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.</description><subject>Antitubercular Agents - administration & dosage</subject><subject>Antitubercular Agents - pharmacokinetics</subject><subject>beta-Glucans - chemistry</subject><subject>beta-Glucans - pharmacology</subject><subject>Biochemistry</subject><subject>Biological Transport, Active - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Caco-2 Cells</subject><subject>Carbohydrate Sequence</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Drug Delivery Systems</subject><subject>Excipients - chemistry</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Intestinal Absorption</subject><subject>Lactic Acid - chemistry</subject><subject>Macrophages - drug effects</subject><subject>Medical Law</subject><subject>Molecular Sequence Data</subject><subject>Nanoparticles</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Polymers</subject><subject>Research Paper</subject><subject>Rifampin - administration & dosage</subject><subject>Rifampin - pharmacokinetics</subject><subject>Stimulation, Chemical</subject><issn>0724-8741</issn><issn>1573-904X</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhYMo7rj6A7xIwIuXaCrdSTrHoXddhVEXVPAW0umaMUNPd5ukF-bfm2FWEUG8VA711atXeYQ8B_4aONdvEgA3knGQDJSUzDwgK5C6YobX3x6SFdeiZo2u4YI8SWnPOW_A1I_JhZClAwpWZN8usR_cyNpp3C87l7Gnt5ubNf3oxml2MQc_YKK3U0qYEv3gfJzm726H9HMOh6VMZrr2OdyFfKRu7OlVXHb0Codwh_FIWze7LgwhB0xPyaOtGxI-u38vyde311_ad2zz6eZ9u94wL6HJTEgQUoita7wRqqlk5-taNp1GiaV0QmkA57GvVQXCl4u2RlSdErJXWtdYXZJXZ905Tj8WTNkeQvI4FK84LcmC5gZ0xbn5P6pMpYXRUhX05V_oflriWA45UcWoroQoFJyp8k0pRdzaOYaDi0cL3J4ys-fMbMnMnjKzJxMv7pWX7oD974lfIRVAnIFUWuMO4x-r_6n6E6WtoGo</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Tukulula, Matshawandile</creator><creator>Hayeshi, Rose</creator><creator>Fonteh, Pascaline</creator><creator>Meyer, Debra</creator><creator>Ndamase, Abongile</creator><creator>Madziva, Michael T.</creator><creator>Khumalo, Vincent</creator><creator>Lubuschagne, Philip</creator><creator>Naicker, Brendon</creator><creator>Swai, Hulda</creator><creator>Dube, Admire</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20150801</creationdate><title>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</title><author>Tukulula, Matshawandile ; Hayeshi, Rose ; Fonteh, Pascaline ; Meyer, Debra ; Ndamase, Abongile ; Madziva, Michael T. ; Khumalo, Vincent ; Lubuschagne, Philip ; Naicker, Brendon ; Swai, Hulda ; Dube, Admire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antitubercular Agents - administration & dosage</topic><topic>Antitubercular Agents - pharmacokinetics</topic><topic>beta-Glucans - chemistry</topic><topic>beta-Glucans - pharmacology</topic><topic>Biochemistry</topic><topic>Biological Transport, Active - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Caco-2 Cells</topic><topic>Carbohydrate Sequence</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Drug Delivery Systems</topic><topic>Excipients - chemistry</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Intestinal Absorption</topic><topic>Lactic Acid - chemistry</topic><topic>Macrophages - drug effects</topic><topic>Medical Law</topic><topic>Molecular Sequence Data</topic><topic>Nanoparticles</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Polymers</topic><topic>Research Paper</topic><topic>Rifampin - administration & dosage</topic><topic>Rifampin - pharmacokinetics</topic><topic>Stimulation, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tukulula, Matshawandile</creatorcontrib><creatorcontrib>Hayeshi, Rose</creatorcontrib><creatorcontrib>Fonteh, Pascaline</creatorcontrib><creatorcontrib>Meyer, Debra</creatorcontrib><creatorcontrib>Ndamase, Abongile</creatorcontrib><creatorcontrib>Madziva, Michael T.</creatorcontrib><creatorcontrib>Khumalo, Vincent</creatorcontrib><creatorcontrib>Lubuschagne, Philip</creatorcontrib><creatorcontrib>Naicker, Brendon</creatorcontrib><creatorcontrib>Swai, Hulda</creatorcontrib><creatorcontrib>Dube, Admire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tukulula, Matshawandile</au><au>Hayeshi, Rose</au><au>Fonteh, Pascaline</au><au>Meyer, Debra</au><au>Ndamase, Abongile</au><au>Madziva, Michael T.</au><au>Khumalo, Vincent</au><au>Lubuschagne, Philip</au><au>Naicker, Brendon</au><au>Swai, Hulda</au><au>Dube, Admire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</atitle><jtitle>Pharmaceutical research</jtitle><stitle>Pharm Res</stitle><addtitle>Pharm Res</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>32</volume><issue>8</issue><spage>2713</spage><epage>2726</epage><pages>2713-2726</pages><issn>0724-8741</issn><issn>1573-904X</issn><eissn>1573-904X</eissn><abstract>Purpose
There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system.
Methods
Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using
1
H and
13
C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug.
Results
Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca
2+
dependent uptake of nanoparticles by the macrophages.
Conclusions
PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25724161</pmid><doi>10.1007/s11095-015-1655-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0724-8741 |
ispartof | Pharmaceutical research, 2015-08, Vol.32 (8), p.2713-2726 |
issn | 0724-8741 1573-904X 1573-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_1709173009 |
source | Springer Link |
subjects | Antitubercular Agents - administration & dosage Antitubercular Agents - pharmacokinetics beta-Glucans - chemistry beta-Glucans - pharmacology Biochemistry Biological Transport, Active - drug effects Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Caco-2 Cells Carbohydrate Sequence Cell Membrane Permeability - drug effects Cell Survival - drug effects Chemistry, Pharmaceutical Drug Delivery Systems Excipients - chemistry Humans Immunotherapy Intestinal Absorption Lactic Acid - chemistry Macrophages - drug effects Medical Law Molecular Sequence Data Nanoparticles Pharmacology/Toxicology Pharmacy Polyglycolic Acid - chemistry Polylactic Acid-Polyglycolic Acid Copolymer Polymers Research Paper Rifampin - administration & dosage Rifampin - pharmacokinetics Stimulation, Chemical |
title | Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curdlan-Conjugated%20PLGA%20Nanoparticles%20Possess%20Macrophage%20Stimulant%20Activity%20and%20Drug%20Delivery%20Capabilities&rft.jtitle=Pharmaceutical%20research&rft.au=Tukulula,%20Matshawandile&rft.date=2015-08-01&rft.volume=32&rft.issue=8&rft.spage=2713&rft.epage=2726&rft.pages=2713-2726&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1007/s11095-015-1655-9&rft_dat=%3Cproquest_cross%3E3732036841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692687322&rft_id=info:pmid/25724161&rfr_iscdi=true |