Loading…

Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities

Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytoto...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical research 2015-08, Vol.32 (8), p.2713-2726
Main Authors: Tukulula, Matshawandile, Hayeshi, Rose, Fonteh, Pascaline, Meyer, Debra, Ndamase, Abongile, Madziva, Michael T., Khumalo, Vincent, Lubuschagne, Philip, Naicker, Brendon, Swai, Hulda, Dube, Admire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3
cites cdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3
container_end_page 2726
container_issue 8
container_start_page 2713
container_title Pharmaceutical research
container_volume 32
creator Tukulula, Matshawandile
Hayeshi, Rose
Fonteh, Pascaline
Meyer, Debra
Ndamase, Abongile
Madziva, Michael T.
Khumalo, Vincent
Lubuschagne, Philip
Naicker, Brendon
Swai, Hulda
Dube, Admire
description Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system. Methods Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using 1 H and 13 C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug. Results Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca 2+ dependent uptake of nanoparticles by the macrophages. Conclusions PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.
doi_str_mv 10.1007/s11095-015-1655-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709173009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3732036841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMo7rj6A7xIwIuXaCrdSTrHoXddhVEXVPAW0umaMUNPd5ukF-bfm2FWEUG8VA711atXeYQ8B_4aONdvEgA3knGQDJSUzDwgK5C6YobX3x6SFdeiZo2u4YI8SWnPOW_A1I_JhZClAwpWZN8usR_cyNpp3C87l7Gnt5ubNf3oxml2MQc_YKK3U0qYEv3gfJzm726H9HMOh6VMZrr2OdyFfKRu7OlVXHb0Codwh_FIWze7LgwhB0xPyaOtGxI-u38vyde311_ad2zz6eZ9u94wL6HJTEgQUoita7wRqqlk5-taNp1GiaV0QmkA57GvVQXCl4u2RlSdErJXWtdYXZJXZ905Tj8WTNkeQvI4FK84LcmC5gZ0xbn5P6pMpYXRUhX05V_oflriWA45UcWoroQoFJyp8k0pRdzaOYaDi0cL3J4ys-fMbMnMnjKzJxMv7pWX7oD974lfIRVAnIFUWuMO4x-r_6n6E6WtoGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692687322</pqid></control><display><type>article</type><title>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</title><source>Springer Link</source><creator>Tukulula, Matshawandile ; Hayeshi, Rose ; Fonteh, Pascaline ; Meyer, Debra ; Ndamase, Abongile ; Madziva, Michael T. ; Khumalo, Vincent ; Lubuschagne, Philip ; Naicker, Brendon ; Swai, Hulda ; Dube, Admire</creator><creatorcontrib>Tukulula, Matshawandile ; Hayeshi, Rose ; Fonteh, Pascaline ; Meyer, Debra ; Ndamase, Abongile ; Madziva, Michael T. ; Khumalo, Vincent ; Lubuschagne, Philip ; Naicker, Brendon ; Swai, Hulda ; Dube, Admire</creatorcontrib><description>Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system. Methods Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using 1 H and 13 C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug. Results Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca 2+ dependent uptake of nanoparticles by the macrophages. Conclusions PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.</description><identifier>ISSN: 0724-8741</identifier><identifier>ISSN: 1573-904X</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1007/s11095-015-1655-9</identifier><identifier>PMID: 25724161</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antitubercular Agents - administration &amp; dosage ; Antitubercular Agents - pharmacokinetics ; beta-Glucans - chemistry ; beta-Glucans - pharmacology ; Biochemistry ; Biological Transport, Active - drug effects ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Caco-2 Cells ; Carbohydrate Sequence ; Cell Membrane Permeability - drug effects ; Cell Survival - drug effects ; Chemistry, Pharmaceutical ; Drug Delivery Systems ; Excipients - chemistry ; Humans ; Immunotherapy ; Intestinal Absorption ; Lactic Acid - chemistry ; Macrophages - drug effects ; Medical Law ; Molecular Sequence Data ; Nanoparticles ; Pharmacology/Toxicology ; Pharmacy ; Polyglycolic Acid - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer ; Polymers ; Research Paper ; Rifampin - administration &amp; dosage ; Rifampin - pharmacokinetics ; Stimulation, Chemical</subject><ispartof>Pharmaceutical research, 2015-08, Vol.32 (8), p.2713-2726</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</citedby><cites>FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25724161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tukulula, Matshawandile</creatorcontrib><creatorcontrib>Hayeshi, Rose</creatorcontrib><creatorcontrib>Fonteh, Pascaline</creatorcontrib><creatorcontrib>Meyer, Debra</creatorcontrib><creatorcontrib>Ndamase, Abongile</creatorcontrib><creatorcontrib>Madziva, Michael T.</creatorcontrib><creatorcontrib>Khumalo, Vincent</creatorcontrib><creatorcontrib>Lubuschagne, Philip</creatorcontrib><creatorcontrib>Naicker, Brendon</creatorcontrib><creatorcontrib>Swai, Hulda</creatorcontrib><creatorcontrib>Dube, Admire</creatorcontrib><title>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><addtitle>Pharm Res</addtitle><description>Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system. Methods Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using 1 H and 13 C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug. Results Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca 2+ dependent uptake of nanoparticles by the macrophages. Conclusions PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.</description><subject>Antitubercular Agents - administration &amp; dosage</subject><subject>Antitubercular Agents - pharmacokinetics</subject><subject>beta-Glucans - chemistry</subject><subject>beta-Glucans - pharmacology</subject><subject>Biochemistry</subject><subject>Biological Transport, Active - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Caco-2 Cells</subject><subject>Carbohydrate Sequence</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Chemistry, Pharmaceutical</subject><subject>Drug Delivery Systems</subject><subject>Excipients - chemistry</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>Intestinal Absorption</subject><subject>Lactic Acid - chemistry</subject><subject>Macrophages - drug effects</subject><subject>Medical Law</subject><subject>Molecular Sequence Data</subject><subject>Nanoparticles</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer</subject><subject>Polymers</subject><subject>Research Paper</subject><subject>Rifampin - administration &amp; dosage</subject><subject>Rifampin - pharmacokinetics</subject><subject>Stimulation, Chemical</subject><issn>0724-8741</issn><issn>1573-904X</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhYMo7rj6A7xIwIuXaCrdSTrHoXddhVEXVPAW0umaMUNPd5ukF-bfm2FWEUG8VA711atXeYQ8B_4aONdvEgA3knGQDJSUzDwgK5C6YobX3x6SFdeiZo2u4YI8SWnPOW_A1I_JhZClAwpWZN8usR_cyNpp3C87l7Gnt5ubNf3oxml2MQc_YKK3U0qYEv3gfJzm726H9HMOh6VMZrr2OdyFfKRu7OlVXHb0Codwh_FIWze7LgwhB0xPyaOtGxI-u38vyde311_ad2zz6eZ9u94wL6HJTEgQUoita7wRqqlk5-taNp1GiaV0QmkA57GvVQXCl4u2RlSdErJXWtdYXZJXZ905Tj8WTNkeQvI4FK84LcmC5gZ0xbn5P6pMpYXRUhX05V_oflriWA45UcWoroQoFJyp8k0pRdzaOYaDi0cL3J4ys-fMbMnMnjKzJxMv7pWX7oD974lfIRVAnIFUWuMO4x-r_6n6E6WtoGo</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Tukulula, Matshawandile</creator><creator>Hayeshi, Rose</creator><creator>Fonteh, Pascaline</creator><creator>Meyer, Debra</creator><creator>Ndamase, Abongile</creator><creator>Madziva, Michael T.</creator><creator>Khumalo, Vincent</creator><creator>Lubuschagne, Philip</creator><creator>Naicker, Brendon</creator><creator>Swai, Hulda</creator><creator>Dube, Admire</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20150801</creationdate><title>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</title><author>Tukulula, Matshawandile ; Hayeshi, Rose ; Fonteh, Pascaline ; Meyer, Debra ; Ndamase, Abongile ; Madziva, Michael T. ; Khumalo, Vincent ; Lubuschagne, Philip ; Naicker, Brendon ; Swai, Hulda ; Dube, Admire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antitubercular Agents - administration &amp; dosage</topic><topic>Antitubercular Agents - pharmacokinetics</topic><topic>beta-Glucans - chemistry</topic><topic>beta-Glucans - pharmacology</topic><topic>Biochemistry</topic><topic>Biological Transport, Active - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Caco-2 Cells</topic><topic>Carbohydrate Sequence</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Chemistry, Pharmaceutical</topic><topic>Drug Delivery Systems</topic><topic>Excipients - chemistry</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>Intestinal Absorption</topic><topic>Lactic Acid - chemistry</topic><topic>Macrophages - drug effects</topic><topic>Medical Law</topic><topic>Molecular Sequence Data</topic><topic>Nanoparticles</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer</topic><topic>Polymers</topic><topic>Research Paper</topic><topic>Rifampin - administration &amp; dosage</topic><topic>Rifampin - pharmacokinetics</topic><topic>Stimulation, Chemical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tukulula, Matshawandile</creatorcontrib><creatorcontrib>Hayeshi, Rose</creatorcontrib><creatorcontrib>Fonteh, Pascaline</creatorcontrib><creatorcontrib>Meyer, Debra</creatorcontrib><creatorcontrib>Ndamase, Abongile</creatorcontrib><creatorcontrib>Madziva, Michael T.</creatorcontrib><creatorcontrib>Khumalo, Vincent</creatorcontrib><creatorcontrib>Lubuschagne, Philip</creatorcontrib><creatorcontrib>Naicker, Brendon</creatorcontrib><creatorcontrib>Swai, Hulda</creatorcontrib><creatorcontrib>Dube, Admire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tukulula, Matshawandile</au><au>Hayeshi, Rose</au><au>Fonteh, Pascaline</au><au>Meyer, Debra</au><au>Ndamase, Abongile</au><au>Madziva, Michael T.</au><au>Khumalo, Vincent</au><au>Lubuschagne, Philip</au><au>Naicker, Brendon</au><au>Swai, Hulda</au><au>Dube, Admire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities</atitle><jtitle>Pharmaceutical research</jtitle><stitle>Pharm Res</stitle><addtitle>Pharm Res</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>32</volume><issue>8</issue><spage>2713</spage><epage>2726</epage><pages>2713-2726</pages><issn>0724-8741</issn><issn>1573-904X</issn><eissn>1573-904X</eissn><abstract>Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells. We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system. Methods Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using 1 H and 13 C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTT assay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug. Results Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca 2+ dependent uptake of nanoparticles by the macrophages. Conclusions PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>25724161</pmid><doi>10.1007/s11095-015-1655-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0724-8741
ispartof Pharmaceutical research, 2015-08, Vol.32 (8), p.2713-2726
issn 0724-8741
1573-904X
1573-904X
language eng
recordid cdi_proquest_miscellaneous_1709173009
source Springer Link
subjects Antitubercular Agents - administration & dosage
Antitubercular Agents - pharmacokinetics
beta-Glucans - chemistry
beta-Glucans - pharmacology
Biochemistry
Biological Transport, Active - drug effects
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Caco-2 Cells
Carbohydrate Sequence
Cell Membrane Permeability - drug effects
Cell Survival - drug effects
Chemistry, Pharmaceutical
Drug Delivery Systems
Excipients - chemistry
Humans
Immunotherapy
Intestinal Absorption
Lactic Acid - chemistry
Macrophages - drug effects
Medical Law
Molecular Sequence Data
Nanoparticles
Pharmacology/Toxicology
Pharmacy
Polyglycolic Acid - chemistry
Polylactic Acid-Polyglycolic Acid Copolymer
Polymers
Research Paper
Rifampin - administration & dosage
Rifampin - pharmacokinetics
Stimulation, Chemical
title Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curdlan-Conjugated%20PLGA%20Nanoparticles%20Possess%20Macrophage%20Stimulant%20Activity%20and%20Drug%20Delivery%20Capabilities&rft.jtitle=Pharmaceutical%20research&rft.au=Tukulula,%20Matshawandile&rft.date=2015-08-01&rft.volume=32&rft.issue=8&rft.spage=2713&rft.epage=2726&rft.pages=2713-2726&rft.issn=0724-8741&rft.eissn=1573-904X&rft_id=info:doi/10.1007/s11095-015-1655-9&rft_dat=%3Cproquest_cross%3E3732036841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-2512522fa8c926835bc4458b7e5eb7eb26711aced46312c819f923b625d6774e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692687322&rft_id=info:pmid/25724161&rfr_iscdi=true