Loading…

A Novel Approach in Quantifying the Effect of Urban Design Features on Local-Scale Air Pollution in Central Urban Areas

Differences in urban design features may affect emission and dispersion patterns of air pollution at local-scales within cities. However, the complexity of urban forms, interdependence of variables, and temporal and spatial variability of processes make it difficult to quantify determinants of local...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2015-08, Vol.49 (15), p.9004-9011
Main Authors: Miskell, Georgia, Salmond, Jennifer, Longley, Ian, Dirks, Kim N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Differences in urban design features may affect emission and dispersion patterns of air pollution at local-scales within cities. However, the complexity of urban forms, interdependence of variables, and temporal and spatial variability of processes make it difficult to quantify determinants of local-scale air pollution. This paper uses a combination of dense measurements and a novel approach to land-use regression (LUR) modeling to identify key controls on concentrations of ambient nitrogen dioxide (NO2) at a local-scale within a central business district (CBD). Sixty-two locations were measured over 44 days in Auckland, New Zealand at high density (study area 0.15 km2). A local-scale LUR model was developed, with seven variables identified as determinants based on standard model criteria. A novel method for improving standard LUR design was developed using two independent data sets (at local and “city” scales) to generate improved accuracy in predictions and greater confidence in results. This revised multiscale LUR model identified three urban design variables (intersection, proximity to a bus stop, and street width) as having the more significant determination on local-scale air quality, and had improved adaptability between data sets.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.5b00476