Loading…

Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury

Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify...

Full description

Saved in:
Bibliographic Details
Published in:Cell stem cell 2015-09, Vol.17 (3), p.329-340
Main Authors: Llorens-Bobadilla, Enric, Zhao, Sheng, Baser, Avni, Saiz-Castro, Gonzalo, Zwadlo, Klara, Martin-Villalba, Ana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73
cites cdi_FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73
container_end_page 340
container_issue 3
container_start_page 329
container_title Cell stem cell
container_volume 17
creator Llorens-Bobadilla, Enric
Zhao, Sheng
Baser, Avni
Saiz-Castro, Gonzalo
Zwadlo, Klara
Martin-Villalba, Ana
description Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. [Display omitted] •NSCs in multiple states of activation coexist in the adult SVZ•Dormancy is associated with high glycolytic and lipid metabolism•Activation is associated with high protein synthesis and differentiation priming•IFN-γ activates a state-dependent response to acute ischemic injury in NSCs Llorens-Bobadilla et al. perform single-cell RNA sequencing of acutely isolated neural stem cells (NSCs) from the adult SVZ, identifying lineage-primed NSCs residing along a continuum of co-existing states between dormancy and activation. NSCs in different states possess unique molecular features and exhibit differential responses to acute ischemic brain injury.
doi_str_mv 10.1016/j.stem.2015.07.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709707291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S193459091500301X</els_id><sourcerecordid>1709707291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi1UBBT4AxwqH3tJGDsf3ki9wNICEmqrLpwt72TSepXEqe2stP--Xi3lyGnm8L6PZh7GrgTkAkR9vclDpCGXIKocVA4gj9iZWKgqa5RSH9LeFGVWNdCcso8hbAAqJUCdsFNZy6IqSnHG5pUdf_eULanv-bM3Y0Bvp-gGi4H_oi2ZPnDDf7pp7k20buSu43fOD2aM_DvN3vR8la7ge0Dg8Y-J_JbQDcRvMNqtidTyeUq9W2_syB_Hzex3F-y4S2C6fJ3n7OXb1-flQ_b04_5xefOUYQkQs4WSqjStMliVsisESio6AbAQuC6paVvZAYBZI9ZKFsWirqHGEtuy6YDAqOKcfT5wJ-_-zhSiHmzAdKkZyc1BCwWNAiUbkaLyEEXvQvDU6cnbwfidFqD3uvVG73XrvW4NSifdqfTplT-vB2rfKv_9psCXQ4DSl1tLXge0NCK11hNG3Tr7Hv8fM0iR2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709707291</pqid></control><display><type>article</type><title>Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Llorens-Bobadilla, Enric ; Zhao, Sheng ; Baser, Avni ; Saiz-Castro, Gonzalo ; Zwadlo, Klara ; Martin-Villalba, Ana</creator><creatorcontrib>Llorens-Bobadilla, Enric ; Zhao, Sheng ; Baser, Avni ; Saiz-Castro, Gonzalo ; Zwadlo, Klara ; Martin-Villalba, Ana</creatorcontrib><description>Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. [Display omitted] •NSCs in multiple states of activation coexist in the adult SVZ•Dormancy is associated with high glycolytic and lipid metabolism•Activation is associated with high protein synthesis and differentiation priming•IFN-γ activates a state-dependent response to acute ischemic injury in NSCs Llorens-Bobadilla et al. perform single-cell RNA sequencing of acutely isolated neural stem cells (NSCs) from the adult SVZ, identifying lineage-primed NSCs residing along a continuum of co-existing states between dormancy and activation. NSCs in different states possess unique molecular features and exhibit differential responses to acute ischemic brain injury.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2015.07.002</identifier><identifier>PMID: 26235341</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Brain Injuries - pathology ; Brain Ischemia - pathology ; Cell Differentiation ; Cell Lineage ; Gene Expression Profiling - methods ; Interferon-gamma - metabolism ; Male ; Mice, Inbred C57BL ; Neural Stem Cells - metabolism ; Neural Stem Cells - pathology ; Single-Cell Analysis - methods ; Transcription, Genetic</subject><ispartof>Cell stem cell, 2015-09, Vol.17 (3), p.329-340</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73</citedby><cites>FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26235341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorens-Bobadilla, Enric</creatorcontrib><creatorcontrib>Zhao, Sheng</creatorcontrib><creatorcontrib>Baser, Avni</creatorcontrib><creatorcontrib>Saiz-Castro, Gonzalo</creatorcontrib><creatorcontrib>Zwadlo, Klara</creatorcontrib><creatorcontrib>Martin-Villalba, Ana</creatorcontrib><title>Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. [Display omitted] •NSCs in multiple states of activation coexist in the adult SVZ•Dormancy is associated with high glycolytic and lipid metabolism•Activation is associated with high protein synthesis and differentiation priming•IFN-γ activates a state-dependent response to acute ischemic injury in NSCs Llorens-Bobadilla et al. perform single-cell RNA sequencing of acutely isolated neural stem cells (NSCs) from the adult SVZ, identifying lineage-primed NSCs residing along a continuum of co-existing states between dormancy and activation. NSCs in different states possess unique molecular features and exhibit differential responses to acute ischemic brain injury.</description><subject>Animals</subject><subject>Brain Injuries - pathology</subject><subject>Brain Ischemia - pathology</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Gene Expression Profiling - methods</subject><subject>Interferon-gamma - metabolism</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - pathology</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcription, Genetic</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhi1UBBT4AxwqH3tJGDsf3ki9wNICEmqrLpwt72TSepXEqe2stP--Xi3lyGnm8L6PZh7GrgTkAkR9vclDpCGXIKocVA4gj9iZWKgqa5RSH9LeFGVWNdCcso8hbAAqJUCdsFNZy6IqSnHG5pUdf_eULanv-bM3Y0Bvp-gGi4H_oi2ZPnDDf7pp7k20buSu43fOD2aM_DvN3vR8la7ge0Dg8Y-J_JbQDcRvMNqtidTyeUq9W2_syB_Hzex3F-y4S2C6fJ3n7OXb1-flQ_b04_5xefOUYQkQs4WSqjStMliVsisESio6AbAQuC6paVvZAYBZI9ZKFsWirqHGEtuy6YDAqOKcfT5wJ-_-zhSiHmzAdKkZyc1BCwWNAiUbkaLyEEXvQvDU6cnbwfidFqD3uvVG73XrvW4NSifdqfTplT-vB2rfKv_9psCXQ4DSl1tLXge0NCK11hNG3Tr7Hv8fM0iR2Q</recordid><startdate>20150903</startdate><enddate>20150903</enddate><creator>Llorens-Bobadilla, Enric</creator><creator>Zhao, Sheng</creator><creator>Baser, Avni</creator><creator>Saiz-Castro, Gonzalo</creator><creator>Zwadlo, Klara</creator><creator>Martin-Villalba, Ana</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150903</creationdate><title>Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury</title><author>Llorens-Bobadilla, Enric ; Zhao, Sheng ; Baser, Avni ; Saiz-Castro, Gonzalo ; Zwadlo, Klara ; Martin-Villalba, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Brain Injuries - pathology</topic><topic>Brain Ischemia - pathology</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Gene Expression Profiling - methods</topic><topic>Interferon-gamma - metabolism</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - pathology</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens-Bobadilla, Enric</creatorcontrib><creatorcontrib>Zhao, Sheng</creatorcontrib><creatorcontrib>Baser, Avni</creatorcontrib><creatorcontrib>Saiz-Castro, Gonzalo</creatorcontrib><creatorcontrib>Zwadlo, Klara</creatorcontrib><creatorcontrib>Martin-Villalba, Ana</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens-Bobadilla, Enric</au><au>Zhao, Sheng</au><au>Baser, Avni</au><au>Saiz-Castro, Gonzalo</au><au>Zwadlo, Klara</au><au>Martin-Villalba, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2015-09-03</date><risdate>2015</risdate><volume>17</volume><issue>3</issue><spage>329</spage><epage>340</epage><pages>329-340</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. [Display omitted] •NSCs in multiple states of activation coexist in the adult SVZ•Dormancy is associated with high glycolytic and lipid metabolism•Activation is associated with high protein synthesis and differentiation priming•IFN-γ activates a state-dependent response to acute ischemic injury in NSCs Llorens-Bobadilla et al. perform single-cell RNA sequencing of acutely isolated neural stem cells (NSCs) from the adult SVZ, identifying lineage-primed NSCs residing along a continuum of co-existing states between dormancy and activation. NSCs in different states possess unique molecular features and exhibit differential responses to acute ischemic brain injury.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26235341</pmid><doi>10.1016/j.stem.2015.07.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2015-09, Vol.17 (3), p.329-340
issn 1934-5909
1875-9777
language eng
recordid cdi_proquest_miscellaneous_1709707291
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Brain Injuries - pathology
Brain Ischemia - pathology
Cell Differentiation
Cell Lineage
Gene Expression Profiling - methods
Interferon-gamma - metabolism
Male
Mice, Inbred C57BL
Neural Stem Cells - metabolism
Neural Stem Cells - pathology
Single-Cell Analysis - methods
Transcription, Genetic
title Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Transcriptomics%20Reveals%20a%20Population%20of%20Dormant%20Neural%20Stem%20Cells%20that%20Become%20Activated%20upon%20Brain%20Injury&rft.jtitle=Cell%20stem%20cell&rft.au=Llorens-Bobadilla,%20Enric&rft.date=2015-09-03&rft.volume=17&rft.issue=3&rft.spage=329&rft.epage=340&rft.pages=329-340&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2015.07.002&rft_dat=%3Cproquest_cross%3E1709707291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-87274ad7ac542f31c2e3f10081cb4e9dd2f000abcc6723386606c4cd49f0e0a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709707291&rft_id=info:pmid/26235341&rfr_iscdi=true